
Force Distribution in Multiple 
Whole- Limb Manipulation 

Antonio Bicchi 
Centro ‘E.Piaggio’ 
Universiti di Pisa 

Abstract 
This paper deals with robotic systems composed of 
multiple actuated limbs (such as arms, fingers, or legs) 
cooperating in the mampulation of an object. The 
problem of decomposing the system of contact forces 
exerted between the robot limbs and the object, in or- 
der to apply a desired resultant force on the object 
(and/or to resist to external disturbances) is stud- 
ied. Enveloping (or “whole-limb”) manipulation oper- 
ations that exploit any part of the limbs to contact the 
object are considered. The peculiarity of such systems 
is that contacts occurring on links with limited mobil- 
ity (such as the inner links of a robot arm or hand), 
and even on fixed links (a robot chest or palm), are 
possible. Among the many consequences of this char- 
acteristic, the one studied in this paper is that only 
some of the internal grasping forces may be actively 
controlled to increase grasp stability. 

1 Introduction 
Multiple robot manipulation systems are becom- 

ing increasingly popular in various applications. Typ 
ical examples are robot arms that cooperate in car- 
rying a heavy or bulky object, robot hands that use 
several fingers for dextrous manipulation tasks, and 
deambulating vehicles that use their legs to negoti- 
ate difficult terrains. Equipping multiple manipula- 
tion systems with the ability to use any part of their 
links for contacting and manipulatin objects is one 
way of further enhancing their capab&ties and appli- 
cability potentials. As often occurs in robotics, this 
idea comes directly from the observation of human 
and animal examples. The arms and chest of a man 
carrying large objects, his hand used to firmly grasp 
an ob‘ect between the phalanges of fingers and the 
palm !“power grasping”), or the limbs of an ape when 
climbing a tree, provide us with the evidence of the 
usefulness of such enveloping manipulation in nature. 
Trinkle [1987] studied planning techniques for envelop- 
ing, frictionless grasping. Robotic devices intended to 
exploit the whole-arm manipulation idea have been 
pioneered by the MIT WAM (Whole Arm Manipula- 
tor) project [Salisbury, 19871. A dextrous hand using 
all its parts (including the inner phalanges and the 
palm) to achieve robust power grasps and high ma- 
nipulability has been proposed by Vassura and Bicchi 
[1989]; Mirza and Orin [1990] described a multiple arm 
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manipulation system (DIGITS), and discussed the im- 
proved robustness of power grasping. 

A characteristic of enveloping manipulating sys- 
tems is their use of links that have only limited mu- 
bility: for example, a hand’s palm has no mobility at 
all. Thus, such systems are intrinsically defective, i.e., 
they possess fewer degrees-of-freedom than necessary 
to achieve arbitrary configurations in their operational 
space. Defectivity of enveloping manipulation systems 
poses new problems in the kinetwstatics and dynamics 
analysis, that cannot be dealt with by standard meth- 
ods ([Bicchi and Prattichizso, 19921). This paper is 
devoted to the investigation of a particular aspect of 
the analysis of envelopin manipulation systems, i.e. 
the problem of understanfing which contact forces can 
be actively used to improve the grasp on the object. 

2 Background 
The problem of controlling contact forces in a mul- 

tiple manipulation system such as a hand, a pair of 
cooperating robot arms, or a legged vehicle, has been 
traditionally considered in the assumption that every 
single finger arm, or le : in the following, we will re- 

space. This assumption greatly simplifies the prob- 
lem, by allowing to separately deal with the analysis 
of the distribution of grasp force among the contacts, 
and with the control of the joint torques that realize 
desirable contact forces. In this section we briefly re- 
view the background on grasp analysis techniques, in 
order to highlight what new problems are posed by 
enveloping systems. 

Let for instance an object be grasped by means of R 
contacts and let the components of contact forces and 
moments on the object form a vector t E IR’. Con- 
sider the task of resisting an external force f E Et3 
and moment m E lR3 applied upon the object (the 
task of steering an object along a desired trajectory 
is equivalent once the inertial load corresponding to 
the specified acceleration and velocity profile is deter- 
mined). The force and moment balance equation for 
the object can be written 

fer to “hands 6 generica$y) has full mobility in its task 

w = -Gt, (1) 

where w = (fTmT)T E Re is the load wrench, and 
G E ]Rex’ is the grasp matrix. The general solution 
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consists (assuming that w E 'R(G)) of the sum of a 
particular and a homogeneous solution, 

t = -GR w + AX, 
where GR is a generic right-inverse of the g r J p  ma- 
trix, and A E Rtxh is a matrix whose columns form 
a basis of the nullspace of G (denoted with N(G)) .  
The coefficient vector x E Rh parameterises the ho- 
mogeneous part of the solution eq.(2): for any choice 
of x, a vector of contact forces results that equilibrates 
the desired load. Grasp optimkation techni ues (see 
e.g. [Nakamura, Nagai and Yoshikawa, 19891 , can be 

so as to, e.g., avoid contact slippage and minimbe 
consumption of power in the joint actuators. Several 
algorithms have been Froposed to find the optimal 
2. The corresponding t = -GRw + A2 is the o p  
timal force distribution among contacts with respect 
to the criterion adopted in the design of V. In non- 
defective systems, t is applied by the fingers under 
some type of force control technique. However, ac- 
cording to the relationship between the contact forces 
on the fingers and the vector r E Rq of joint ac- 
tuator torques, r = JTt. J E RtXq is the "Jaco- 

tive (q 2 rank (J < t )  there is no guarantee that the 

robot. In other words, complete (output) controlla- 
bility of internal forces arises is not achieved in those 
cases. While the controllability concept can bc inves- 
tigated in a dynamical model of rasping, in this paper 
we undertake a quasi-static anafysis meant to answer 
the question, "what internal forces at equilibrium are 
modifiable at will, when inputs are joint torques?". 

Consider for example the grasp of the object de- 
picted in fig.1-a by means of three contacts placed in 
c1, ca, and ca.  Intuitively, there are three possible 
independent combinations of contact forces giving ho- 
mogeneous solutions to the grasp equations, namely 
those pushing or pulling the object along the edges of 
the so-called "#rasp triangle" (fig.1-b). Any pair of 
these "internal forces or their combinations may be 
used, for instance, to squeeze the object and decrease 
the danger of slippage. However, if the grasp is to 
be realized by the simple single-joint gripper shown 
in fig.1-c, it appears that some configuration of inter- 
nal forces may not be feasible (for instance, opposing 
forces in the direction c p  - ca as shown in the upper- 
most part of fig. 1-b). In order to solve the force decom- 
position problem for general manipulation systems, a 
more accurate analysis is therefore necessary, which 
takes into account the kinematics and the defotmabil- 
ity of the manipulation system. To incorporate con- 
tact constraints in the model, relative displacements 
between the object and the links at the contact cen- 
troids must be considered. Therefore, we introduce n 
reference frames "Ci fixed w.r.t. the object aqd cen- 
tered at the contact point ci; and n reference frames 
"Ci, each k e d  w.r.t. the link that touches the ob- 
ject in q, and centered in ci. Corresponding to a 
small displacement Ar and rotation Ad of the object 

formulated by defining a cost and constraint 9 unctions 

bian" of the robot), when t 6 e robot system is defec- 

optimal contact 2 orces can actually be realised by the 

' ' 8  

8)  b) 0) 

Figure 1: A simple example of whole-hand grasp be- 
tween the palm and a single-joint finger. 

w.r.t. the base fiame (summarised in the "twist" vec- 
ArT,Aq5T)T), frames "Ci undergo a dis- 

with Au can be derived by the virtual work principle 
placement tor A' = 6 O c i  and rotation Aodi whose relationship 

as 
AOx = GT Au, (2) 

Aox = (AOcY,. . . , AOcT, Aod;', . . ., Aoq51f)T. 
Analogous is the relationship between small displace 
ments of the joints Aq and the displacements Am% 
and rotations "A4i of the contact frames mCi: 

Amx = J Aq, (3) 

Amr = (AmcT,. . . , AmcZ, Am#, . . . , Am@)T. 
Contact constraints impose that certain components 
of the relative displacements Aox - Amx are selec- 
tively opposed by reaction forces, depending upon 
the type of contact. Several types of contact models 
can be used to describe the interaction between the 
links and the object, among which the most useful are 
probably the point-cont ac t- wit h- fr ic tion also called 
"hard-finger") model, the "soft-finger" mo 6 el, and the 
complete-constraint (or "very-soft-finger") model. For 
a description of these models, see e.g. [Mason and Sal- 
isbury, 19851. Contact constraints can be expressed in 
terms of a suitable selection matrix H as 

H(Amx - AOX) = 0, (4) 

All relationship considered so far are valid for a rigid- 
body model of the robot system. However, the force 
distribution problem for general systems is an under- 
determined problem of statics: to solve the indeter- 
minacy, the rigid body model is inadequate. We have 
therefore to consider a more accurate model, taking 
into account the elastic elements that are involved in 
the system. This can be conceptually done by intru- 
ducing a set of "virtual springs" [Hanafusa and Asada, 
19771 interposed between the links and the object at 
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the contact points, such that the elastic relationship 
between the relevant components of the relative dis- 
placements Aox - Amx and the corresponding com- 
ponents of contact forces can be written as 

t = KH(Amx - A'x) + to, ' (5) 
where to is the contact force in the reference configura- 
tion Amx = Aox = 0. The stiffness matrix K E Ettx' 
incorporates the structural elasticity of the object and 
of the fingers, and the stiffness of joint servos [Mason 
and Salisbury, 1985 As a consequence of its phys- 

tailed and comprehensive study on the evaluation and 
the realization of desirable stiffness matrices with ar- 
ticulated hands has been presented by Cutkosky and 
Kao [1989]. It should be noted that, since K incor- 
porates the stiffness of the joint position controllers, 
the displacement vector Aq must be interpreted as the 
change in the input reference for position controllers. 

3 The homogeneous solution 
Internal forces, i.e. self-balanced contact forces that 

have no effect on the global motion of the manipulated 
object but significantly affect the grasp stability, corre- 
spond to homogeneous solutions of eq.( 1). However, as 
suggested above, not all homogeneous solutions may 
be actively controlled by using joint variables as in- 
puts. Internal contact forces that are not actively re- 
alizable through joint control may still be present in 
a system, due to its initial conditions - e.g., they may 
have been set by prestressing elastic elements in the 
manipulation system. In this section we prapose a 
decomposition of the homogeneous subspace in a sub- 
space of active, internal contact forces and a subspace 
of passive (preload), internal contact forces. 
3.1 Active Internal Forces 

Consider an equilibrium configuration of the ma- 
nipulation system under an external load wo, and de- 
note with q, and with to the joint positions and the 
contact forces in such reference configuration, respec- 
tively. By modifying the joint reference position by 
Aq, the equilibrium configuration of the object, still 
subject to w,, is changed by Au. Correspondingly, 
contact forces are t = to + At. From Gt = w, follows 
that At E M(G We define active those internal con- 

cations of the system configuration, and let Fh, E R' 
denote the set of all active At's. 

Proposition 1 The set of active internal forces &v is 
a subspace of R', i.e., every active internal force can 
be written as the product of a basis matriz E times an 
arbitrary coeficient vector y of suitable dimension. 
Proof. Consider a system in the equilibrium con- 
figuration described by w,, q,, to, and let 6u be a 
displacement of the object which is compatible with 
all the constraints imposed by contacts with the robot 
links (i.e., 6u is a virtual displacement of the ab'ect). 
Applying the principle of virtual work (P.V.W.! and 
eq.( l), we have immediately 

ical nature, K can I; e assumed non-singular. A de- 

tact forces At t k at correspond to controllable modifi- 

wz6u = tzGT6u = 0, V6u. 

By imposing joint displacements Aq, the equilibrium 
configuration is perturbed. A new equilibrium under 
the same external force w, will be reached on condi- 
tion that the P.V.W. is satisfied: 

w,T6u = (to + At)TGT6u = AtTGT6u = 0, V6u. 

From eq. 5), At = K JAq - GTAu). After substitu- 

AqTJTKTGT6u = AuTGKTG6u V6u 

tion, the b .V.W. con b, 'tion is 

which implies 

GKJAq = GKGTAu, (6) 

Au = (GKGT)-'GKJAq (7) 

= (I - GgG)KJAq (8) 

and hence 

At = K(JAq - GT(GKGT)-'GKJAq) = 

where GE stands for the K-weighted pseudo-inverse 
of G. Therefore, all active internal forces can be ex- 
pressed as 

where the columns of the 2 x e matrix E form a basis 
of the range of (I - G$G)KJ. 0 

The vector y E Et' is comprised of e free variables 
among which the i corresponding to an optimal grasp 
force distribution can be chosen by means of suitable 
cost functions and optimization routines. Note that 
in general e 5 h, i.e. active internal forces are "fewer" 
than internal forces, corresponding to intuition. Also, 
e 5 q,  i.e. no more independent active internal forces 
can be controlled than are joints in the system. 

From a computational point of view, the algorithm 
sketched in the proof of Proposition 3 to evaluate the 
desired basis matrix E is not optimal, since it entails 
the explicit calculation of the ri ht-inverse GE. A 
more efficient algorithm, which tfso provides further 
insight in the problem, can be derived by rewriting 

- 
t =  Ey, (9) 

es.(6) as 

G (KJ Aq - KGTAu) = 0, 

or, equivalently, as 

Ax = KJAq - KGTAu. 

This equation can be recast in block matrix form as 

[A - KJ KGT] ( i: ) = 0. (10) 

Put Q = [A - KJ KGT] E Rtx(h+q+6), and let 

B E R(htqt6)xb be a matrix whose columns span the 
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nullspace of Q (whose nullity is b). Finally, parti- 
tion B as B = [BT BT BflTl where B1 E Ethxb,  
B2 E WXbl and Bg E R6xb. The subspace under 
investigation is thus obtained as 

Fhr = R(AB1). 

and the matrix E is obtained by using only the indc  
pendent columns of AB1. This method, though seem- 
ingly complex, is numerically more efficient and robust 
than the previously presented, since it avoids any ma- 
trix inversion. Further, by using eq.(lO) it can be 
easily calculated which joint reference displacements 
myst be commanded if a desired active internal force 
At = E j  is to be applied: 

A4 = B2(ABl)'Ej (11) 

The equilibrium position of the ob'ect is correspond- 

3.2 Preload internal forces 
As mentioned above, in general manipulation sys- 

tems there may be internal contact forces that can not 
be actively controlled by means of joint displacements. 
Therefore, these forces will remain constantly equal to 
their initial value. In a mechanical jig, such forces can 
be set once and for all as a preload condition, for in- 
stance for preventing slippage. Although in robotic 
systems it may be unlikely to encounter such preload 
forces, their analysis is an interesting completion to 
the study above. 

Let 3 h 0  E R' denote the subspace of internh, pas- 
sive (preload) contact forces, and let the subspace of 
contact forces that the manipulation system can exert 
on the object with zero joint torques be 

30 = {t E R'l JTt = 0) E (t E Et'I t = C S ~ , V S ~  E Rk} 

ingly displaced by Afi = B I ( A B ~ )  3 E?. 

where C E Rex' is a matrix whose column form a 
basis of the nullspace of JT (whose nullity is k). The 
preload force subspace is thus given by 

Fho = Fh n F p  = R(A) n R ( C ) .  

Proposition 2 The set of passive internal forces FhO is 
a subspace of R', i.e., every passive internal force can 
be written as the product of a basis matriz P tames an 
arbitrary coefficient vector s of suitable dimension. 

Proof. Since the desired set is the intersection of the 
range space of matrices A and C, it is a subspace. To 
evaluate a basis, consider the equation As1 = C S ~ ,  
or, in matrix form, 

[A - C] ( :i ) = 0. 

Let Qo = [A - C] E Rtx(htk) ,  and let 'Bo E 
IR(h+k)xd be a matrix whose columns span the 
nullspace of Qo (whose nullity is d). Finally, parti- 
tion Bo as Bo = [BZl BZ2] , where Bol E E t h x d ,  and T 

Boa E Rkxb. The desired subspace is thus obtained 
as 

Fho = R(AB01). 
Therefore, all possible preload forces can be expressed 
as 

t =  Ps, (13) 
where the columns of the t x p matrix P form a basis 
of the ran e of AB,1, and s E RP parameterizes the 
preload su%space. 0 

From the definition of the particular, active and 
preload homogeneous force subspaces follows 

R(P)@'R(E) = M(G) (14) 

R(P) @R(E) @R(GZ) = R'. (15) 

4 Examples 
In this section we wil l  illustrate the above discussed 

algorithms and show how the manipulator kinemat- 
ics and elasticity properties play an important role in 
the analysis of the grasp when general manipulation 
systems are considered. In order to do that, we will 
consider the grasp of the object depicted in fig.1-a by 
means of four Merent manipulation systems. 

Let the coordinates of contact points be c1 = 
(0 0 2a)T; c2 = (0 2a 3a)T; cg = (0 2a a)T, and the 
corresponding unit normal vectors be n1 = (0 1 O)T; 
n2 = (0 - 9 - L)T; and ng = (0 - 9 f)'. All con- 
tacts are modelea as "soft-finger". Accordingly, the 
dimension of composite contact force/torque vectors t 
is t = 12, and a basis of the null-space of G is provided 
by the columns of the matrix A 

A =  

' 0  0 0 -2 
2 2 0 0  
1 - 1 0  0 
0 0 0 1  

- 2 0  0 0 
- 1 0  1 0  
0 0 0 1  
0 - 2 0  0 
0 1 - 1 0  
0 0 0 0  
0 0 0 -4a 
0 0 0 4 a  

0 
0 
0 
1 
0 
0 

-1 
0 
0 
0 
- 
+a 
xia 

0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
1 

f i  

Note that the first three columns correspond to con- 
tact forces taken two at a time and opposing each 
other along the edges of the grasp triangle. The pres- 
ence of friction torques a t  the soft-finger contacts pro- 
duces the last three columns of A. The stiffness matrix 
K will be evaluated in each case according to Cutkosky 
and Kao [1989], as 

K = (C, + JC,JT)-', 

where C, is the structural compliance matrix, and C, 
is the servo compliance matrix. The structural com- 
pliance is due e.g. to  the flexibility of links and m e  
chanical transmission, or to soft gripping surfaces. In 
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4 b) 4 

Figure 2: Active and preload internal forces for the 
grasp of fig.1 

0 -  
0 

-2 
0 
2 
1 

-2 
1 
0 
0 
0 

;P= 

our example, C, is assumed diagonal, with C,j,j = 
0.05 mm/N for linear virtual springs 1 5 j 5 9), and 

(10 5 j 5 12). On the other hand, assuming that 
the q joints are controlled with q independent PD ser- 
vos with proportional gain kp = 100.0 Nmm/deg., we 
have C, = th. 
4.1 Simple gripper 

Consider the simple one-joint gripper of fig.1-c. 
The joint axis is s 1  = (1 0 O)T, and its origin 
01 = (0 0 O)T. The jacobian matrix in this case 
is JT = (0  - 2a 0 0 0 0 0 0 0 0 0 0). As intu- 
itively clear, the subspace of active internal forces is 
one-dimensional in this example, and the preload force 
subspace is &dimensional: 

C,j,j = 0.01 deg./Nmm for rotation J virtual springs 

- 

> 

E =  

0 -  
0 
0 
0 
0 
0 
0 
0 
0 
4 
1 
1 -  - 0  

2 
0 
0 

-1 
0 
0 

-1 
0 
0 
0 
0 

E =  

;P = 

- 

> 
- - 2  0 0 0 0 

0 0  0 0 0  
0 - 2 0  0 0  
1 o J z o o  
0 2  0 0 0  
0 1  0 1 0  
1 0 - 4 0 0  
0 - 2 0  0 0  
0 1 0  - 1 0  
o o -%a o 4 

-4a 0 a 0 1 
. 4 a  0 a 0 1 

Recall that each column represents a combination of 
contact forces ti and normal torques mini at the con- 
tact points, arran ed as (tT tT t: m1 ml msJ'. The 
only set of internd forces that can be modifie a t  will 
is represented in fig.2.a. Fig.2-b and fig.2-c represent 
two of the basic combinations of passive internal forces 
(columns 2 and 4 of P, respectively), that cannot be 
modified by joint control. 
4.2 Two-joint hand 

Consider the two-joint hand of fig.3.a, which em- 
ploys the two links and the palm to grasp the object 
of fig.1-a. Joint lues  are s1 = s2 = (1 0 O)T, and the 
origins are 01 = (0 0 O)T, and 01 = 
subspace of active, internal forces and 
forces are now 2- and Cdimensional, respectively, and 

r! 
4 b) 4 

Figure 3: Three Merent manipulators grasping the 
same object. 

their basis matrices are 

0 
-2 
0 
0 
1 
6 
0 
1 

-6 
0 
0 
0 

-2 
0 
0 
1 
0 
0 
1 
0 
0 
0 

-4 
4 

0 
4 
0 
0 

-2 
1 
0 

-2 
-1 
0 
0 
0 

0 
0 
0 

0 
0 

0 
0 

4 

-4 

1 

4.3 Three-joint finger. 
Consider now the threcjoint finger depicted in 

fig.3.b, where SI = s2 = sa = (1 0 O)T, and 01 = 
, 02 = (0 0 3a)T, and 0 s  = (0 3a 3 ~ ) ~ .  The 6" imension O o)T of the active and preload force subspaces 

are not changed in this case: 

E =  

- 0  0 
-2 0 
0 5  
0 0  
1 -5 
0 1  
0 0  
1 5  
0 -6 
0 0  
0 0  

. o  0 

;P = 

- - 2  0 0 0 
0 0  0 0 
0 1  0 0  
10jz0 
0 - 1 0  0 
0 - 3 0  0 
1 0 - 4 0  
0 1  0 0  
0 2  0 0 

-4a 0 a 
. 4 a  0 a 1 

4.4 Three-joint finger and palm. 
If the object of fig.1-a is grasped by a three-joint 

finger and the palm of a hand such as depicted in 
fig.3.c, a three-dimensional subspace of active inter- 
nal forces can be obtained. In fact, assuming in this 
example s1 = s1 = ss = (1 O O)T, 01 = (0 o 3a)T, 

200 

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on May 14,2010 at 09:32:34 UTC from IEEE Xplore.  Restrictions apply. 



basis matrices result 

A =  

E =  

4.5 

- 0  0 -  
0 0 

0 0 
0 0 .  

4 1 2  0 

J2/2 0 
0 J 2 / 2  

- 0 4 / 2 -  

0 0 0  
-2 0 0 
0 1 0  
0 0 0  
1 -1 0 
0 0 1  
0 0 0  
1 1 0  
0 -1 -1 
0 0 0  
0 0 0  
0 0 0  

;P = 

-2 0 0 
0 0 0  
0 0 0  

0 0 0  
0 0 0  

0 0 0  
0 0 0  

1 4 0  

1 -4 0 

0 -%a d3 
-40 a 1 
4a a 1 

Kerr and Roth’s example 

Figure 4: Kerr and Roth’s [1986] example no.1. 
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