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Abstract 
The purpose of this paper is to present a paral- 

lel algorithm which can be used to determine how a 
large-scale system can be best decomposed in sim- 
pler subsystems to which decentralized control can 
be applied. The algorithm is based on an analysis 
in the frequency domain which employs the notion of 
block-diagonal dominance. The decentralization de- 
sign problem is set as a combinatorial optimization 
problem and a “branch and bound” approach is ap- 
plied to solve it. The proposed algorithm is conceived 
for parallel computational architectures. A discussion 
on the computational efficiency gained by paralleliza- 
tion is presented, and the implementation of the algo- 
rithm on a transputer network is briefly illustrated. 

1 Introduction 
Given a MIMO system which consists of a number 

of weakly coupled SISO subsystems, the direct or the 
inverse Nyquist array method, proposed by Rosen- 
brock 11 can be applied for designing a decentralized 
contro 1 in the hypothesis of diagonal dominance of the 
transfer function matrix G(s). In the case of weakly 
interacting MIMO subsystems we cannot expect to 
achieve the condition of diagonal dominance of the 
transfer function matrix for every s on the Nyquist 
contour. In order to take advantage of weak coupling 
among MIMO subsystems, one needs to introduce 
the notion of block diagonal dominance reformulating 
the Rosenbrock’s methods for blockwise decomposi- 
tions. A generalization of the Nyquist array methods 
is due to  Bennett and Baras [2], who used the notion 
of diagonal dominance introduced by Feingold and 
Varga [3] providing extensions of Gerschgorin bands 
and Ostrowsky bounds. Subsequently, Limebeer [4] 
proposed modifications of the stability criteria, that 
are based upon the concept of generalized block dia - 
onal dominance introduced originally by Fiedler [q. 
Robert [6 and Pearce [7] introduced a new notion 

mance robustness have been studied by Nwokah [a] 
who showed how decentralization and robustness are 
related. 

The objective of this paper is to present a “branch 
and bound” algorithm which can be used to choose 
the optimal decentralization according to a chosen 
“control cost” function. In the general case, the ele- 
ments of G(s) are not in the right order to verify a 
possible dominance condition. This means that if we 

of block d iagonal dominance. Stability and perfo- 
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apply a suitable input and output permutation as 

G’(s) = P . G ( s ) .  PT 

a block diagonal dominance condition on the matrix 
G’ (s )  for some block partition could be met. We pro- 
vide an algorithm, based on a “branch and bound” 
approach, that, for a given frequency sample vector 
w = ( W 1 , , . , ~ k ) ~ ,  returns a number of solutions for 
decentralized control design, ordered according to a 
“control cost” function. Frequency axis sampling is 
necessary in order to obtain a finitely computable al- 
gorithm. Obsviously, dominance on a set of sampled 
frequencies is only a necessary condition for applying 
Nyquist array methods. Analysis is conducted for the 
“worst case” wf in w ,  that is the one with lower vari- 
ance of elements of G(jwf). When a feasible solution 
is found, we verify whether it is feasible for all other 
matrices G ( j w ; )  with i # 1. Finally the algorithm 
returns a set of decompositions for which the block 
diagonal dominance condition is met for all given fre- 
quency samples. A partial ordering is provided on 
the set, based on the size of diagonal sub-blocks and 
on the residual level of interaction. In order to verify 
the block diagonal dominance condition for every s on 
the Nyquist contour, a more detailed analysis can be 
done on selected decompositions in the solution set. 

2 Problem formulation 
Given the transfer function matrix of a MIMO 

system G(s) with n inputs and n outputs, and a 
k-vector of real w = (w1, .., wk)T specifying the set 
of k frequency samples a t  which dominance must be 
checked, the problem of decentralization design con- 
sists of finding, amoung all decompositions that af- 
ford a prescribed level of non-interaction, these al- 
lowing the finest decentralization. This can be cast 
in a combinatorial optimization problem as 

where X is the set of solutions, I ( w ,  z) : IRk x X + 

IRk is a constraint function, and f : X + IN’ with 
0 < m 5 f(z) 5 M is the cost function. Definitions 
of the above terms follow. 
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2.1 The set of solutions X 
The set of solutions X consists of structured ele- 

ments z, henceforth called “decompositions”. Each 
decomposition 2 is comprised of a permutation ma- 
trix P and a subdivision S 

X = { ( P , S )  : P E  Pnj S E  Sn}. (1) 

P, is the set of all n x n permutation matrices. The 
cardinality of Pn is n!. Let H be the set of the first 
n integers: H = {1,2,. . ., n}. A partition of H is a 
family of subsets of H (51, Jz, . . . , J,} such that each 
j E H appears in one and only one subset J;. If 2x 
stands for the family of all subsets of HI S’ denotes 
the set of partitions of H 

S’ = { I  c 2x : VJi, J j  E I Ji n Jj = 0, uiJi = H} 

S, is the set of all partitions of H (51, Jz, .. ., J r }  
such that all J; for i = 1,. . . , T consist of consecutive 
integers 

Sn={  ( J 1 , J ~ , . . . , J + } E S ’ : 1 E J 1 ,  n E  Jrl 
VI E J; \ (1, n} ( I  + 1) E J; U J;+i A 
A(Z - 1)  E J; U Ji-1, i = 1, . , T }  

Since each element S E S,, as it is shown below, 
can be represented with a (n - 1)-vector of binary 
variables, the cardinality of S, is 2”-’. The number 
of possible solutions for problem P is 

1x1 = (P,(. IS,( = n! .2”-’. 

Given a solution I = (PI S) E X let us apply the 
permutation matrix P to G(s) obtain B(s )  + Cnxn 

B ( s )  = P G(s) PT 
S = {J1, Jz, . . . , J,} defines a partition of B(B)  with 
square diagonal blocks 

V J i ,  Jt  E S -+ zit = {hj} 
Z E J I ,  j E J t ,  s , t  = l , . . . , T  

We drop the variable s from matrices ZIt without 
confusion. 

2.2 The constraint function I(w, z )  
The function I ( w , z )  which appears in the con- 

straint condition of problem P is a k-vector whose 
components are interaction indices 

k I ( w ,  z) : Rk x x - R ( I ( W 1 ,  i x) ) ;  +) .  
I ( W ,  z) = 

I(wh I z) wk 

In order that a solution z E X be feasible we demand 
that all components I (w; , z ) ,  with i = l , - . . , k ,  be 
lower than a value IM 

l l I (w,z)I lm < IM (2) 

The interaction index is a function of the frequency 
w and of the decomposition I E XI whose values are 
not negative real 

I : R x X -+ lR with I ( w ,  I) 2 0. 

Associate to  each decomposition I = (P, S) a matrix 
C(w, z) -+ E t r x r  obtained from B(s )  

i f i =  j 

and define the interaction index I ( w ,  z) as follows‘ ’ 

I(w, x) = llC(w, 5)Ilm 

I ( & , x )  < Ijlf = 1 

(4) 

For a chosen frequency value & the inequality 

defines the condition of block diagonal dominance of 
the matrix B ( j & ) ,  obtained from the solution z which 
includes a matrix block partition. This definition in- 
cludes the notions of block diagonal dominance in- 
troduced by Robert [6] and Pearce [7]. However, the 
user is free to choose IM in order to achieve either 
higher decentralization IM large) or stronger control 
robustness ( IM small) k. The set of feasible solu- 
tions for the optimization problem P is therefore 

Y = {I E X : JII(w, z)llm < I M } .  

2.3 The objective function f(z) 
The choice of the objective function is a crucial 

point in the definition of an optimization problem. 
The best situation is to obtain the maximum decen- 
tralization given by n SISO control systems, so in 
this case f(z) must be equal to the minimum value 
m. Vice versa, the worst situation is to have no de- 
centralization, with only one MIMO control system 
correspondingly, f (z)  must reach the maximum value 
M. A wide variety of objective functions is possible, 
e.g. to maximize the number of sub-blocks, minimize 
the dimension of the largest sub-block, and so on. In 
the following, a minimum squared dimension objec- 
tive function is considered, that is defined as follows 

r 

f(z) = lJi12. ( 5 )  
i = l  

Example 
Consider the transfer function matrix G(s) 

At & = 10 we obtain A = G(j4) 

Choose a value IM = 0.8, and consider the solutions 

$1 = ( P1,Sl) 2 2  = ( pa, SZ) 
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with 

Evaluating B(j10) = P a A - PT we have 

t 

I (wl  z)(310, 21) = 4 > Ina 
f(z1) = f ( x 2 )  = l2 + 22 = 5 

I (wl  x ) ( J 1 o l  2 2 )  = 0.5 < Ina Figure 1: Objective function f(z), constraint function 
I ( 2 )  and lower bound function v ( z )  

Therefore 21 is not feasible while z2 is. 
2.4 Equivalent optimization problem 
Let I(z) denote (II(w,z)l lm and let us consider a 

new optimization problem Q which is equivalent to 
problem P 

(&I min g ( z )  
X E X  

where 

( M + 1  v x  E x : I(z) 2 IM. 
(6) 

In the new formulation we removed the constramt 
condition and the feasible set is X. Also, we have 
assigned the maximum value of the objective func- 
tion g ( z )  to solutions that do not satify the non- 
interaction constraint in P. Indeed we have 

I(z 1 v x  E Y e g ( z )  = f(2) + - < M + 1. 
IM 

Note that the addition of the term in g ( x ) ,  re- 
flects a further partial ordering related to the inter- 
action index value. 

3 Branch and Bound Algorithm 
We propose a "branch and bound" algorithm to 

solve the optimization problem Q. To this purpose we 
need a lower bound function of g ( z ) ,  which allows to 
apply implicit visit of subtrees during the exploration 
of enumeration tree. A lower bound function must be 
defined on subsets of X and must give a value which 
is lower or equal to g ( z )  for all solutions that be- 
long to the subset. Furthermore, the computational 
complexity of the lower bound function ought to be 
lower than that of the objective function, involving 
the I(z) = (II(w, +)I!= < 1, test. 

3.1 The lower bound function 142) 
Since III(w! z)1Im 2 I ( w t ,  z) V i  any of them can be 

chosen for budding a lower bound function. The pro- 
gram chooses I such that the variance of the elements 
of G ( j w L )  is the lowest. However the program let the 
user free to make different choices. Introducing v ( z )  

and applying the well-known matrix norm proprety 

we have (IC(wt, z)1Im 2 
ing inequality holds 

v ( z ) .  Therefore the follow- 

E x : III(w, z)1100 2 I ( W f 1 . )  2 4.) ( 8 )  

Let us introduce the notion of sub-decomposition. 

1 1  

Figure 2:  Objective function g ( z )  and lower bound 
function ~ ( 2 )  

Given two decompositions z1 = (Po, SI) and 52 = 
(Po, Ss), having the same permutation matrix PO, 
with IS11 = r and JSaJ = T + 1, 52 is sub- 
decomposition of x1 if there exists t such that 

- 1  Jt-11 Jt l  Jttlr . . * I  Jtl 
sa & = = t"' J1, J a l .  J21 - * 1 Jt-1, JII J:', Jttl, . * . , J T >  
Jt = J;  U J:'. 

For all z E X define the set of all sub-decomposition 

(9) 

Claim 1 If solution zl = (Pol SI) and z2 = (Po, S2) 
with x2 sub-decomposition of 51, then 

D ( x )  of x 

D ( x )  = {y E X : y is sub-decomposition of z} 

;3y:(z2). 
v x 1  E x, v52 E q.1)  - v(z1)  5 4 2 2 ) .  
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Proof: The roof is algebraic in nature, and is re- 
ported in [llr. 

Corollary 1 For all z E X, function v ( z )  i s  a lower 
bound of ~ ~ I ( y l ~ ) ~ ~ m  on the subset D ( z )  c X of z 
sub- decomposztzons 

vz E x : .(z) 5 III(w,y)lloo vy E D(z ) .  (10) 

VY E W Z ) .  0 

Proof: 

4.1 I 4 Y )  i l l ~ ( ~ 1 Y ~ l I c a  

We are looking for a lower bound function of g(z) 
defined on subsets of X w : 2 x  - IR such that 

w ( T )  5 9(Y) VY E T c x 
We now show that there exists a biunique relationship 
between S,, and sub-graphes of the graph G with n 
nodes and (n - 1) (i,i + 1) arcs (see figure 3). As- 
sociate the binary variable ai to each arc (i, i + l), 
ai = 0 indicating that the ( i ,  i + 1)-arc is missing and 
ai = 1 indicating that the (i,i + 1)-arc exists. Put 
in J; all nodes belonging to 8th connected sub-graph. 
Consider a subset of XI T obtained choosing n1 vari- 

a ,  a 2  a3 a 4  a n - 1  

I -  -v- * V - V I  * V I  -v- ' V I  \ 

1 2 3 I 6 n-1 n 

_ _ - _ _  _ - - - _  I----_ _---. ----_ _---. *---.- 

Figure 3: Graph G 

ables ai = 0, na variables = 1, and leaving free 
the others ras = n - n1 - nz > 1. Let 2p1 denote 
the solution belonging to T with the ns variables ai 
not assigned yet set to 1 and z[O] the solution with 
ai = 0. Obviously we have T = D(zp1). Consider a 
lower bound for g(x) on the subset T 

w' = min{g(y) : y E D(q1l)) = 

min{f(z) + e : VY E ~ ( z p l ) )  
if 3y E D(q11) : I(y) < IM 

= {  M + 1  if VY E D(Z[l]), I ( Y )  2 IMl 

is a lower bound function of g(z) on T = D(z[l]). 
Remark: The computation of w T) is approximately 
the same as that needed for w(zp1 I , since computation 
of f(z[ol) only involves the sum of r squared terms. In 
the following time needed to perfom the computation 
of a function will be used as a measure of compu- 
tation complexity. Since evaluation of v ( z )  involves 
ra  infinity-norms and divisions the computation com- 
plexity of w ( T )  is na - A, where A denotes a reference 
unit of time. For many subsets T has the same zp], 
the last values of v ( ~ [ ~ ] )  computed are stored in a 
table for repeated use. 

3.2 The enumeration tree 
., 

Figure 4: Enumeration tree visited by "branch & 
bound algorithm". 

Let us consider a partition of X into n! subsets yi, 
obtained by choosing the permutation matrix 

yi = { (PIS)  E X :  P=PiEPn} 

Each yi has 2"-' elements and we have Y; = D( zio) c 
XI where zio = (Pil{H)). The root of the enumer- 
ation tree is the set X. At depth 1 there are the n! 
subsets yi. From this point a bipartite separation rule 
is applied: 

- yi is parted into two subsets Zil, Zi2. Let k l  be 
[31, we insert into Zil all solutions with ahl = 0 and 

Figure 5:  First assignment: ahl = 0 and ah, = 1. 

min{f(y) + -VY V(Y) E D(.[l])) = f("[O]) + 7' "(X[lI) 

Therefore 

into Zja the ones with ahl = 1. 

aha = 0 and aka = 1. 
IM - choose kz = [21 and bipart Z;l, Z;2 assigning 

- consider ah, with kg = n - r-1, and so on. 
- bisection of the graph G is applied since we assign 

all arc variables. 
This separation rule allows us to use the lower 

bound function w ( T )  for subset evaluations. The visit 

if +[1]) < Ikf 

if 42[1]) 2 Ikf 

4 s  1 1 f(z[oI) + -+ 
(11) 

{ M + 1  
w ( T )  = 
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of a subtree rooted in Ys involves computing n times 
function w(T)  then whose complexity is h(n)A = 
n’ A. 

Enumeration tree visit is implemented handling a 
priority queue of candidate nodes Q, which contains 
the next nodes that must be visited. Let us divide 
the priority queue Q into two subsets Q = Q1 U Q a  

Q1 = q’E Q :  depth  q‘ = 
Qa = I q’ E Q : depthtq’l > :I. 

where depth(q’) denotes the depth of the node q’ in 
the enumeration tree. The initialization phase sets 

Qr = {Yi ’ Yz, . . , Yn!) &a 0 

There is no insertion into Q1 but just extractions. 
Instead of storing all yi in a queue, an extraction 
procedure, which generates the next subset to  be ex- 
tracted using the previous one, is provided. This is 
possible by defining an ordering on Q1. Before each 
extraction from Ql ,  Qz is empty, following separation 
of a yi new elements are inserted in Qz. We apply 
on &a a FIFO selection strategy which generates a 
depth visit of the enumeration tree. We choose to 
visit firstly the left son (uk = 0) and then the right 
son (uk = 1). In such a way at each step we firstly try 
to  divide in two equal parts a sub-block Jt of B which 
involves the maximum decrement -Af of objective 
function -Af = q, Therefore, we achieve a kind 
of visit that is also a minimum search. This strategy 
supplies small queue dimension (depth strategy) and 
quick algorithm steps (minimum search). If the visit 
of the enumeration tree reaches a leaf ZL then the 
objective function g(zL) is evaluated which involves 
I ( s ~ , w i )  < IM test V i ) .  And if g(zL is lower than 

solution. 
the current upper bound ZL becomes t h e current best 

4 Algorithm parallelization 
“Branch and bound’’ algorithms are easy to  paral- 

lelize, in fact they are based on the enumeration tree 
visit, so that if we have a number of elaboration units, 
we can divide the tree in several subtrees and assign 
a subtree visit to  each elaboration unit. We can use a 
master-slave model where the master process handles 
the high part of the enumeration tree and gives all 
slave processes the task to explore a particular sub- 
tree. In this case we achieve that the priority queue of 
candidate nodes is not concentrated on a single pro- 
cess enviroment, but it is distributed. In our “branch 
and bound” algorithm the master process owns the 
priority queue Q1, whereas each slave process has its 
own priority queue for subtree evaluation, so that a 
parallel evolution of Q2 is obtained. The only consis- 
tency problem regards upper bound local copies, since 
both the master process and all the slave processes 
have their own copy. When a slave process reaches a 
solution better than the current upper bound value, it 
sends this solution to  the master process. A parallel 
high priority update process, supplying transmission 
and reception of upper bound updates, is provided. 

4.1 Parallel architecture 
The parallel architecture is based on a message 

passing model and the software network is a tree- 
shaped graph. The host process runs user interface 
and file management, the master process handles high 

to-Host from-Host 

W W 
Figure 6: Software network. 

level algorithm and the four slaves processes imple- 
ment subtree visit. Note the hierarchical structure of 
the adopted model. The hardware network is sup- 
ported by an IBM 486, host computer, and a net- 
work of four transputers IMS T800. the hardware 
network and the master process, with high priority, 
plus a slave process, with low priority, on the root 
transputer. 

4.2 Parallel algorithm efficiency 
Let us consider a slave process elaboration. Each 

slave instance starts with a waiting which ends when 
the slave process receives a new subtree exploration 
task. After data receiving elaboration takes place. 
When the elaboration is finished a waiting time fol- 
lows until the master process is ready to  receive data 
from slave processes. To ensure a efficient perfor- 

!-I) end I 

‘WaitinOl I Computing I Data sending 
* t  i H  

’ l I Inatancte (i) end I 

I 1  I I  
# .  

Data receiving Waiting 
H H 

Figure 7: Time diagram of a typical slave process 
instance. 

mance of the parallel algorithm we must control the 
relationship between waiting time, communication 
time and elaboration time. Elaboration time is a 
function of the number of subtrees m that must be 
visited for all slave instances and of the subtree visit 
complexity h(n), TLIab = m h(n) * A = m - n3 - A. 
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k number of nodea m 

Table 1: Elaboration time, expressed in msec, as a 
function of m and k 

Communication time is proportional to data length, 
Tco” = d(nJ. A = do - n . A. To achieve a speci- 
fied value of e ciency let fix a minimum value to  the 
quotient between them 

This relationship allow us to choose m value 

= r,,.do]. (13) 

To limit waiting time, we demand that probability of 
prompt access to communication P be greater than a 
Pmin value 

This allows us to  choose the optimal number of slave 
processes 

k = [(I - Pmin) * (Emin + 1) + 1J (15) 

4.3 Algorithm performance 
Several tests have been carried out in order to  as- 

sess algorithm performance. Table 1 shows a typical 
performance obtained for n = 10. Note that elabora- 
tion time is proportional to m. From this values we 
get the reference unit of time A = 569msec, commu- 
nication time T,,, = l l . lmsec ,  and waiting time 
Twait = 8.3msec. Observe that communication time 
and waiting time raise proportionally with n, but they 
are always much lower than elaboration time. Indeed 
we have large E values. We can conclude that the 
speed-up obained is proportional to the number k of 
slave processes used, that is the number of transputer 
on the network. However parallelization of the algo- 
rithm is not rewarding if the transfer function matrix 
dimension n is too small, n < 10. 

5 Conclusions 
If a square transfer function matrix of a MIMO 

system is given, the possibility of applying a decen- 
tralized control should be examined. The notion of 
block diagonal dominance allows to extend decentral- 
ized control to a large class of systems. Decentralized 
control design, which means choosing a permutation 
matrix and a block partition, can be set as a combi- 
natorial optimization problem by defining a suitable 

“control cost” function. Block diagonal dominance 
condition for every s on the Nyquist contour can be 
tested on a suitable set of frequency samples. The 
dominance for all frequency samples gives a constraint 
condition for the optimization problem. A suitable 
separation rule of the set of the solutions allowed us 
to  define a lower bound function for application of a 
branch and bound algorithm. Branch and bound al- 
gorithms are easily parallelizable by subdividing enu- 
meration tree visit. A transputer network is used as 
hardware support for the parallel algorithm. Exper- 
imental data support use of the proposed technique 
for decomposing large scale (n > 10) systems. 
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