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Abstract

A new neural state observer for non linear plants is proposed. Using a dynamical back-
propagation learning algorithm, a non linear dynamical system, the neural observer. is built
n order o reproduce the INput/ourput behaviour of an unknown non linear piant and o
give us an estimarion by the output of the piant state. A straightforward example ilustrates
the proposed technique. Simuiation results seem to be attractive.

1. INTRODUCTION

The probiem of state observation for finear and non linear plants has been largely
reported in the literature. For the linear case a method for sstimating the states from the
knowledge of the Inputs/outputs signais has been obtained oy Luenberger {1]. For the
nenlinear case a general approach to the problem of state observation is extremely difficult
0 deal with. An interesiing method to extend the Luenberger observer by a linearizaton
technique about constant operating points of the sysiem is presented in [2]. A different
method is to apply a nonlinear iransformation that converts the system into observer
canonical form in order o simplify the observer design [3]. Unformnately finding z suitable
ransformation is very difficult and not always possible. A drawback common o both the
previous approaches is that the nonlinearities of the plant must be included nto the
dynamical equations of the observer. A novel technique with excellent resuits was proposed
by Walcott {4], designing an asymptotic VS5S-type observer, based on the sitding mode
theory [5]. Another synthesis tecinique of a VSS-observer, based on the hypersmability
theory [6] was given in [7]. For all these methods it is mandatory 0 known the analyrical
Structure of the system in order (0 identify the set of unknown states.

Our approach is based on the dynamical input/output behaviour: so in order to build a
state opserver, there are two main steps:

L. building a system that gives the same output from the same input of the plant, i.e.
performing the modei ideatification from input/output observations
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2. searching for a correlation between plaat states and observer ones; this correlation gives
us a satisfactory state estimation from the [/O point or view, the so called esiimarion by
ourpur.

The observer must be general and adaptive respect to many classes of plants; therefore:
an artificial neural model used for general purpose approximation has been chosen. In this
paper we show how it is possible to obtain a non linear state observer of unknown nonlinear
plants, limiting the heavy theoretical conditions that are typical of conventional non linear
observer.

Using the recurrent multilayer perceptron model and the dynamical back-propagation
learning algorithm, we build a non linear dynamical system, the neural observer, in order
to reproduce the input/output behaviour of an unknown non lnear plant and to give us an
estimation by the owrpur of the plant state, from state neurons.

. WHY NEURAL NETWORKS

It is well known that human parailel recognition capabilities exceed those of machines. -
So an intensive tesearch has been developed in the fleld of parailel neural architectures.
Non lnear processes with not measurable disturbances, unmodelled dynamics and
component failures need a robust intelligent control strategy. The feasibility of applying
recurrent networks, based on the backpropagation algorithm, in identification and control of
non linear dynamical systems has been demonstrated by Narendra [81 in recent years. Even
if the neural network theory is sdil in the initial stage in non linear control problems ,
seneralized recurrent neural networks seem to be a very attractive tool. The neural
approach would prove effective in blending the rigorous non linear control theory and the
empirical studies based on computer simuiations.

3. NEURAL DENTIFICATION

Before discussing the identification problem, it is important to answer the question 1f an
exact representation exists for continuous functions in terms of simpler functons.
Kolmogorov [9-10] stated that a continuous multivariable function can be expressed in
terms of sums and composition of single-variable functicns. Hecht-Nielsen {11] pointed out
that a Kolmogorov network is similar to a neural network consisting of summing nodes and
squashing functions. The original Kolmogorov statement is the following: there exist fixed

increasing continuous functions hpq(x) on I=[0 1] so that each continuous function f on "

can be wriiten in the form:

2n+i 1
f(Xpy ooy Xp) = Z gq(z hpq (Xp)) ‘ ey
q=1 p=l

where g, are properly chosen continuous functions of one variable.

Moreover Cibenko [12] and Poggio [13] proved that a network with at least one hidden
layer of sigmoidal units can approximate arbitrary well any continuous funcion.



4. MODEL DESCRIPTION

Thne simulations have been carried out using a recurrent back-propagation network with
- first order units. Following the same formalism as Pineda [14], for the vector state X we

gbtain:

ax;
at x5+ oug T 2)
where
U = E WijXj fori=12,...n 3)
j
and
1
oled = 1+e™@ )

The constant value I; represents an external input bias that may be included inside or
outside o(cr). X; represents the activity of the ith neuron and wy is the connection strength
from the jth to the ith neuron. The evolution of this system in the weight space is given by:

dw; SE

dt - ‘3“’1] (5)
where
E(x) == i IR “ ‘ 6)
=] '
and
d -~ €i€0
I = () = {7)

) otherwise
% is a numerical constant which defines the time scale on which w changes; 7 must be small
so that x is always essentially at steady state, while d; values belong to the set of the desired

putpufs.
5. NEURAL OBSERVER

Consider the non linear dynamical system given by:

[ x(k+1) = f(x(10,u(k)
O]yt 1) = hix(0) ®
with x<€R" veRP, yerd £ RVTP=R", n: R7-RY,
under the following hypothesis:
1) n,p,q are known
2) x(k),u(k) are bounded and measurable Vv Xg

3) f(x,u) is continuous on a compact subset Qq GRq
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4) h(x) is continuous and invertible on a compact subset Oy er"

Muitilayer feedforward networks with hidden layers may approximate a aon linear functig
iff 3) and 4) are true. Therefore two networks Al and A2 are built in order to approxim

the uninown functions f and h (Fig.1).

u(k) .
:i Al b D) 0oag s
(X x(k+1} ¥{k+1)
Figure L.

It is noticeable that we cannot approximate f and h separately, because the state x
unknown and only « and y are available. If the two networks are connected In a cascads
scheme (Fig.2) with a delay line in the feedback path, we obtain a coOmposite network
whose inpuis and outputs are al available. The 'states’ x(k) are now inierior signa

determined from the network Al.

_ 8 2+ yik+1)
xf o A A2 >
A
Figure 2. -

The backpropagation learning algorithm is then proposed 10 adjust the weights of the neural
network in order to-identify the non linear dynamics of the sysiem only from the knowledg

of inputs and outputs.

6. SIMULATION RESULTS

Simulations of SISO systems have been performed in order to evaiuate the neural
observer efficiency. The topology of the neural network Al is the following one:

inputs | outputs hidden layers | 15t layer neurons 7nd {aver neurons | learning Sep |
2 1 2 20 5 225000

Fa

The output of network Al 1s linear and is set as input of network A2. As first
example, consider the following non-linear system excited by sinusoidal input:

x{X)
1-§-x(k)2
y(k+1)= 0.8*x(k+1)

k+1)= + n
xk+ ) ? )
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In this case network A2 is simply a linear neuron. Results of simulations are presented
in figure 3: the observed state well-approximates the actual one, with maximum error

related o the actual state amplitude of 0.58%.
In the second example network Al is the same, whiie the topology of AZ is the

following one:

inputs {outputs | hidden layers | ISt layer neurons 7nd lgyer neurons | €ATninNg Siep
i I 2 i2 5 > 3000

EA

The state observer has been applied to the system described by foliowing eguations:

L exoxA)
D= oz T (10)

y(k+1)= exp(x(k+ 1Y)
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The process is still excited Dy sinusoidal input. Resuit of simulations are presented in figu
4 and in figure 3: the observer behaviour is still goed, with maximum state error of 8 4
and maximum output error of 13%.

7. CONCLUSIONS

In this work a new neural architecture for the on-line identification is proposed. Th
SISO plant used for simularions is assumed to be described by non linear difference
equations. The neural network adopted to identify the whole system is the recurrent muiti
layer perceptron with the backpropagation leamning algorithm. Oniy few "a priori
information concerning the class of difference equations are required. The extensiv
simulations carried out using the model suggested in this paper reveal that this neural
architecture is effective for identification. Further investigations on high order process
and not nvertibie output functions are in progress.
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