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Abstract 
In this paper the problem of pasping objects with a robotic 

hand is considered. Unlikely most existing literature, the possi- 
bility that rome or all of the lingerr are not able to arbitrarily 
control interactiolu with the grasped object ia taken into ac- 
count. Such defective manipulation ryrtemn can still be coop 
eratively coordinated so as to perform usefully. In fact, having 
defective arms is the norm rather than an exception in many 
manipulation opcrationa, ruch aa power p ~ p s  with a hand, or 
whole-ann manipulation of large objects. The paper attempts to 
solve the problem of optimising contact forces in the power grasp 
of an object. To do $0, a basis of the mbrpace of p u p  forces 
that are available for grasp optimiiation is firstly established. 
This analysis is instrumental for subaequent optimization strate- 
gies, incorporating the quest for an extremum of some quality 
criterion. In the paper, a control algorithm is presented that 
guarantees the asymptotic convergence to the grasp force con- 
figuration that “ i r u  the risk of slippage while maintaining 
bounded contact forces between the fingers and the object. 

1 Introduction 
The problem of grasping objects with multiple coordinated robot fin- 
gers is widely recognized as fundamental in achieving higher man ip  
ulation dexterity. Since the first articulated hands appeared, a vaste 
literature has been produced addressing the underdetermined prob- 
lem of choosing the contact forces that the fingers should apply to  the 
grasped object in order to counterbalance given external forces acting 
on the object. Among the important contributions to  the understand- 
ing of the problem, see e.g. [Orin and Oh, 19811, [Salisbury and Roth, 
19831, [Ken and Roth, 19861, [Li, Hsu, and Sastry, 19891, [Nakamura, 
Nagai, and Yoshikawa, 19891. The common underlying idea of most of 
these works is that the space of contact forces can be subdivided in a 
subspace containing all the contact forces configurations that do not 
produce effects on the global balance of the grasped object. It is from 
this subspace that  optimizing contact forces can be picked, according 
to the grasp quality measure that each author proposes for the different 
tasks a t  hand. 

This approach assumes that any optimizing contact force can be re- 
alized by the robot fingers. For instance, if point-contacts with friction 
are considered, i t  is required that  only the distal phalanges of fingers 
that have a t  least three joints in non-singular configuration are used. 
However, this is an overly restriction to  the design and use of dextrous 
robot hands, since inner phalanges and also the palm can play an im- 
portant role in resisting external forces and in improving the quality 
of grasps. A grasp that  uses also such surfaces of the hand has been 
termed “power grasp”, in Gew of its intrinsically better capability of 
bearing external loads [Cutkosky, 19891, [Mirra and Orin, 19901. 

This paper considers the grasp optimization problem taking into 
account also the limitations deriving from the presence of contacts on 
links with limited mobility, i.e. kinematically defective. Once the sub- 
space of optimising contact forces is thus reduced to  the subspace of 

controllable optimizing contact forces, a grasp quality measure can be 
introduced that incorporates the desirable features of the grasp force 
configuration for the task a t  hand. In this paper, a control algorithm 
is presented that  guarantees the asymptotic convergence to  the grasp 
force configuration that minimizes the risk of slippage while maintain- 
ing bounded contact forces between the arms and the object. 

2 Background 
Consider an object being constrained by means of n contacts. The 
model of contact interactions assumed in this paper is point-contact 
with friction. This means that we assume that  the system of forces 
transmitted through contact interactions is equivalent (as far as the 
global balance of the bodies is concerned) with a resultant force applied 
a t  the intersection of the force system’s wrench axis with the body 
surface. Note that this contact model is not generally applicable to  real 
contacts, for which also a local torque about the surface normal must be 
considered. However, the assumption is plausible for contacts between 
almost-rigid bodies with low friction surfaces [Bicchi, Salisbury, and 
Brock, 19901, and is in fact most frequently used in grasp analysis 
literature. 

Let ci be the i-th contact point, and pi be the corresponding contact 
force (both vectors have three components). While if we are interested 
in an open-loop analysis of the grasp, only contact point locations need 
to be known (as a result ofgrasp planning, e.g.), whenever it is intended 
to realize a closed-loop control over the grasp both those locations and 
force components must be measured in real-time. Such information 
can be obtained for instance through the use of force/torque based 
(intrinsic) contact sensors [Bicchi, 19901, or any other equivalent device, 
and can be assumed to be expressed in the base reference frame. 

Let the 3-vectors f and m be the net external force and moment 
exerted on the manipulated object, respectively. In this paper, we con- 
sider the external load as a disturbance to  the firm grasp of the object, 
arising e.g. from the object’s own weight, from inertial (D’Alembert) 
forces or other stimuli, to  which grasp forces oppose. The balance 
equations for the grasped body can be written a s  

or, in matrix notation, as 

w = Gt, (2) 
where 

I3 I3 ... 
= ( S(C1) S(C2) ”. &) ) ’ 
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and S (c i )  is the cross-product matrix for cj (i.e. the skew-symmetric 
matrix such that S(ci)v = cj x v). Accordingly, w is a 6-vector, t is a 
3n-vector, and G is a 6 x 3n matrix. 

Equation (2) shows that the grasp problem consists of 6 linear al- 
gebraic equations in 3n unknowns. For objects constrained by a t  least 
three contacts, then, the problem of finding the grasp forces t that 
can resist (or impart) a given external load w is generally underdeter- 
mined, and some criterion will be needed to  choose among all possible 
solutions. In the following, we will assume that a solution to (2) exist, 
i.e. that w E ‘R(G). Hence, (2) is solved in general by the sum of a 
particular solution i, and a homogeneous solution i, such that 

(3)  
( 4 )  

The homogeneous solution corresponds to internal forces, squees- 
ing the object in the grasp but not contributing to the overall balance. 
Any arrangement of contact forces resisting a given external load will 
be comprised of a fixed part, the particular solution t,  and of a part 
that can be used for grasp optimization purposes. Note that the ho- 
mogeneous solution has as many degrees of freedom as g, the nullity of 
matrix G .  The first condition on optimizing contact forces can there- 
fore be written as 

t = A x 1 ,  (5) 
where A is a 3n x g matrix whose columns span the nullspace of G ,  
M(G),  and XI is a free g-vector. 

Provided that enough degrees of freedom are available to arfitrarily 
move the finger links in contact with the object, a suitable t can be 
chosen to  comply with other concerns about grasp forces, among which 
are the following: 

M a x i m u m  con tac t  forces. A delicate object could be damaged by 
too large grasp forces; in some cases, it is some parts of the robot 
system (e.g. the force sensors) that might be hurt. A safety limit, 
depending on the object being manipulated, should be chosen to 
limit the intensity of contact forces. Another reason for limiting 
contact forces is actuator saturation. Actuator saturation and 
safety bounds can be summarized as 

llpill S.fi .maa > O , i =  1 , 2 , . . . , n .  (6) 

where 11 11 indicates the euclidean norm of the argument 

M i n i m u m  con tac t  forces. There are also reasons to keep contact 
forces above a minimum value. One is of practical nature: con- 
tact sensors work better in a certain range of forces, and cannot 
distinguish too small forces from noise. Another, perhaps deeper, 
reason is that we would like to avoid the temporal discontinuity 
of contacts. Klein and Kittivatcharapong [1988] designed with 
this term a phenomenon, consisting in a low-frequency sequence 
of impacts between some links of the manipulators and the ob- 
ject. This highly undesirable “chattering” of the contact forces 
has been encountered e.g. by Cheng and Orin [1989], who ex- 
plained it as due to a substantial freedom in the solution of (2)  
while yet meeting some underconstraining optimality criterion. 

A lower bound on the normal component of contact forces can be 
imposed as 

prn, 2 > 0, 2 = 1 , 2 , .  . . , n. (7) 

Fr ic t ion l imits .  To avoid slippage a t  the contacts, the normal and 
tangential components of each contact force pi must comply with 
Coulomb’s law of friction 

PI 

where pj is the static friction coefficient in the current contact 
conditions, and a, = (1 + p ! ) - l l Z ,  

Task-depend ing  Goals Depending upon the task to  be pursued, dif- 
ferent characteristics of the load distribution among the contacts 
are desirable. Cheng and Orin [1989], for instance. describe such 
optimization goals as load balance, minimum effort, and tempo- 
ral continuity of contact forces. Except for the latter, this paper 
does not consider these and other possible goals explicitly, and 
focuses on the achievement of a grasp that satisfies all the con- 
straints that are directly relevant to grasp stability. However, 
various other objectives could be easily added in the framework 
laid down in the following sections. 

In summary, the constraints imposed on the choice of the grasp 
forces are in part expressed by linear equalities (as expressed by (2)) ,  
and partly by nonlinear inequalities, due to saturations and to  friction 
limits. Diverse optimality criteria have been applied in literature, the 
basic idea being that the criterion should reflect somehow the “dis- 
tance” of the grasp configuration from the constraints imposed on it. 
This distance can be assimilated to a grasp “stability margin”, allowing 
for system’s robustness with respect to unexpected disturbances, un- 
certainties of the model and sensor noise. It should be noted that often 
this intuitive meaning of distance from limit conditions does not reflect 
a precisely defined metric in the space of grasp variables. In the follow- 
ing, we will refer to “optimal” grasp configurations in the sense that 
they are “good” grasps that satisfy the constraints, and that extreniize 
some criterion of stability. 

The choice of grasp forces is a typical non-linear programming 
problem, and related techniques have been often applied in literatule 
(see for instance [Jameson and Leifer,1987]; [Nakamura, Nagai, and 
Yoshikawa,l989]). If friction limits are linearized, the problem can be 
recast as a linear programming one, as for example Kerr and Roth 
(19861, and Cheng and Orin (19891 did. 

3 Grasping with defective links 
As already pointed out, most contributions to  grasp force optimization 
so far disregarded the problem of the actual feasibility of their results 
on general robot hands. Thus, the results are applicable only to very 
special hands, i.e. those whose kinematics allow an arbitrary contact 
force to be realized at each contact point between the fingers and the 
the object. However, there are many important cases where such hy- 
pothesis does not hold, and yet the manipulation system retains its 
utility: 

simple grippers and medium-complexity hands, whose fingers have 
less then the required number of joints; 

dextrous hands using all their parts (including the inner pha- 
langes and the palm) to achieve robust power grasps (see e.g. 
[Vassura and Bicchi, 19891). 

Moreover, there are other robotic applications to which the problem 
of “grasping” (in the broad sense) with limited mobility links is relevant, 
e.g.: 

6 cooperative manipulation with several arms, possibly comprising 
whole-arm manipulators ([Salisbury, 19871); 

legged locomotion systems, using their legs and body to crawl 
and climb over objects; 

Because of their similarity, all such robot devices can be consid- 
ered to form a class of “integral” manipulation systems, to which the 
following analysis apply. 

Consider for example the grasp of the object depicted in fig.1-a. In- 
tuitively, there are three possible independent combinations of contact 
forces giving homogeneous solutions to the grasp equations, namely 
those lying on the edges c1 - c2, c2 - c a ,  c1 - cs of the so-called grasp 

- 6’92 
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Figure 1: A simple example of grasp with limited mobility parts of a 
hand. 

triangle. However, if the grasp is to  be realized by the single-joint grip- 
per shown in fig.1-b, it appears that some of these combinations can 
not be realized (e.g. opposing forces in the direction ca - cs). It is 
also evident that the dimension of the subspace of effectively realizable 
internal contact forces can never be larger than the number of inde- 
pendent joints in the hand, i.e. in this example we can only have a 
one-dimensional subspace. In this section we propose an algorithm for 
describing a basis of this subspace. 

To do so, we need to  write the complete quasi-static model of the 
hand-object system. The relationship between joint torques and con- 
tact forces on the robot links is 

r = DTt, (9) 
where D is a 3n x m matrix whose elements are functions of the robot 
geometric parameters and joint angles, and of the contact point loca- 
tions. The role of matrix D is similar to  that of Jacobian matrices used 
in the analysis of conventional manipulators, and its elements can be 
easily derived from kinematic considerations. 

The converse relationships of (2) and (9) relating infinitesimal mo- 
tions of the joints (m-vector 6q), of the contact points (3n-vector 
6c = ( ~ c T , ~ c T , . . . , ~ c : ) ~ ) ,  and of the object in Cartesian space (6- 
vector 6u), can be easily obtained through the principle of virtual work 
as 

6c = D6q; 
6c = GT6u. 

Finally, let the model of contact interactions between the robot links 
and the object-environment system be summarized by the relationship 

t = K6c, (12) 
where the 3nx3n  matrix K is the stiffness matrix ofthe grasp [Salisbury 
and Roth, 19831. Note that the latter equation assumes the knowledge 
of the elastic behaviour of the mechanical system, and includes the 
effects of joint servoing. A comprehensive study on the evaluation and 
the realization of desirable stiffness matrices with articulated hands has 
been presented by Cutkosky and Rao [1989]. 

We now ask which of the contact forces can be controlled starting 
from inputs a t  the joint level. The idea is to distinguish between direcfly 
and indirectly controllable forces: 

a) suppose the object is rigidly fixed to the environment, and that 
the active hand joints are actuated: the resulting contact forces 
between the links and the grasped object are considered directly 
contToilable. 

b) suppose now that the object is released from the rigid attachment 
with the environment, and is subject t o  the external force/torque 
that  directly Controllable contact forces would cause. Indirectly 
controllable contact forces are those that  the mechanism would 
oppose to  counterbalance such external force/torque. 

Using (12) and (lo), the subspace of directly controllable forces 
result to be the range space of KD, i.e. 'R(KD). Therefore, a generic 
directly controllable contact force can be written as 

tdc = KDx-J, (13) 
where xz is a free m-vector. 

obtained considering (12) and ( l l ) ,  as R(KGT), and hence 
The subspace of indirectly controllable contact forces ti, can be 

ti, = K G ~ X ~ ,  (14) 
where XQ is again a free 6-vector. 

The subspace 3 of all realizable internal contact forces is given 
by all the combinations of directly and indirectly controllable forces, 
that  are also internal; in set notation, therefore, F = R(A) n {R(D) @ 
R(G7)} .  In order to find a basis of this subspace, let w' be the external 
force/torque caused by the generic directly controllable contact force : 

W' = Gt&. 

Indirectly controllable contact forces excited by w' must be mapped 
under G in the same w', i.e., using (13) and (14), 

GKDX-J = W' = GKGTxs. (15) 
or, subtracting the left hand side from the first, and factoring the matrix 
G out, 

G ( K D X ~  - K G ~ X ~ )  = 0. (16) 
According to  the above definition of the matrix A, (16) can be rewritten 
as 

Ax1 = KDxa - KGTxa, 

In block matrix form we write this equation as 

[A - KD KGT] ( :: ) = 0. 
1 3  

Let Q = [A - KD KGT] (Q is a 3n x (g + m + 6) matrix), and 
B a (g + m + 6) x q matrix whose columns span the nullspace of Q 
(whose nullity is q ) .  Finally, partition B as B = [BT BC B:lT, where 
B1, B2, and B8, are respectively g x q ,  m x q,  and 6 x q blocks. All 
controllable homogeneous (internal) forces can therefore be expressed 
a s  

i ,  = Ey, (18) 
where the columns of the 3n x h matrix E form a basis of the range of 
AB1, i.e. of 3, and y is a free h-vector (h 5 q ) .  

Note that the vector y is comprised of the h free variables that can 
be used to set up an unconstrained grasp optimization problem, as it 
will be described in the following section. In fact, since a particular 
solution f to  the object balance equation (2) is assumed to exist, all 
realizable solutions to the object balance equation (2) can be written 
as 

t, = f +E, = G L w +  Ey, (19) 

where GL indicates a generalieed left inverse of the grasp matrix G. 

Example. To illustrate the above relationships, consider again 
Let c1 = (0 0 2a)T; c) = (0 2a a)=; cs = the example of fig.1. 
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(0 2a 3a)T. The  corresponding unit normal vectors are nl = (O1O)T; 
na = (0 - L ) T ;  n3 = (0 - 9 - f)'. Finally, assume that the a 2  
grasp stiffness matrix is diagonal with K ( i , i )  = 1006, except for the 
element K ( 2 , 2 )  = k. 

From easy static balance considerations, we have DT = (0 - 
2a 0 0 0 0 0 0). Also, 

G =  

' 1 0 0 1 0 0 1 0 0  
0 1 0 0 1 0 0 1 0  
0 0 1 0 0 1 0 0 1  
0 -2a 0 0 -a 2a 0 -3a 2a 

2 a O O a O O 3 a O O  
, O  0 0 - 2 a  0 0 -2a 0 0 

A =  

( 0  0 0 
0 2 2  

-1 1 0 
0 0 0  

-2 0 0 
1 0 1  
0 0 0  
0 -2 0 

~ 0 -1  -1 

The result of applying the above described algorithm for finding the 
basis of controllable internal forces to  this example is E = (0 1 0 0 - 
.5 0 0 - .5 O ) T ,  as it might be intuitively anticipated. 

4 Design of the Grasp Cost Function 
Equation (19) allows us t o  decouple the set of constraints on the choice 
of grasp forces discussed in section 2,  and provide% a means of describ- 
ing all contact forces that balance a given external load while being 
realizable, in terms of a free variable vector, y. This section will be 
concerned with the design of a cost function of such vector y ,  so that 
the remaining constraints, namely minimum and maximum contact 
forces, and friction bounds, are satisfied a t  the cost function minimum. 

We start by noting that all the constraints (6) ,  (7), and (8) on the 
i-th contact force-torque, can be written in that order as 

'oi(y) = Jai llpill+ jy; f:n, + 16, 5 0, 

where 

j =  1 , 2 , 3 ; ,  
(20) 

'ai = 0; 'yi = -1; '6; = f+in; min. force; 
'a i  = 1; '7% = 0; 26; = -f;,ma=; max. force; 
3ai  = 1. m p  3 Yi = -1; 36i = O i  slippage. 

Let j R ;  C !Rh indicate the open set of grasp variables that satisfy the 
constraint (20)  of corresponding indices, '0; := {y I J u , ( y )  < 0). For 
the E-th contact and the j- th constraint we conside1 the cost function 

(21) 
1 

' v i ( Y )  = Zj,fo 
and a global grasp cost function simply as the sum of local cost func- 
tions, 

Such a cost function grows indefinitely as the constraint boundaries 
are approached, which is desirable in order to  prevent their violation. 
Moreover, the V, are minimized by contact forces that are further from 
the boundary, thus privileging choices of contact forces that correspond 
to most robust grasps. In order to show that such a cost function is well 
suitable as a performance index for the optimal control of grasp forces, 
its convexity with respect to  the grasp variables y must be discussed. 

The functions p, = pi(y) and pi = qi(y) can be written explicitly 
by partitioning the elements of (19) as 

t = ( p ' ) = i + E y = (  Pn P, p ' ) w + (  M, M 1 ) y ,  (23) 

so that we have 

Pi(Y) = Pi w + Mi Y ;  (24) 
where P, is a 3 x 6 matrix, and Mi is 3 x h. The gradient of the cost 
function with respect to  y can be written as the h-vector 

where the argument y has been dropped for brevity. Denoting with 
t = & the zIewoT of a generic vector v, the gradient of Jui with 
respect to  y is given by 

The hessian of the cost function with respect to  y is the h x h matrix 

where 

From (28) it can be easily observed that is positive semidefi- 
nite. Also, it  can be shown that jui(y) is a convex function. From the 
convexity of Jui(y) directly follows that j R i  is a convex set. Assum- 
ing that a t  least one possible combination of grasp forces exists that  
complies with the given constraints, the set 

j=1,2,3; 

R =  n ini 
I = ' , . .  ,nj 

collecting all grasp variables y that  satisfy every constraint, is not void 
and convex. Furthermore, from (27) it  is easily verified that, for any 
y E R ,  the cost function hessian is positive semidefinite. Hence, the 
cost function is convex in R. 

This result is very useful, since it guarantees that it is possible 
to  build grasp control laws that asymptotically converge to  a n  optimal 
grasp (though not necessarily unique), provided that the starting grasp 
is acceptable ([Canon, Cullum and Polak, 19701). 

5 Grasp Optimization Algorithm 
In the previous sections of this paper the grasp problem constraints 
have been analyzed, and linear equality constraints have been consid- 
ered separately from nonlinear inequality constraints. This allowed the 
construction of a basis of all contact forces that comply with equal- 
ity constraints, so as to eliminate those relationships from the actual 
computation of the optimal grasp forces. Inequality constraints have 
been dealt with by defining a cost function acting basically as a penalty 
function. 

The aim of this section is to  design a suitable law for controlling 
contact forces in the grasp of an object, which is subject t o  external 
disturbance forces wd(t) .  Such disturbances are assumed unknown but 
bounded and resistible, i.e., there exists a t  least one possible solution 
to the grasp equation ( 2 )  with constraints (6), (7), and (8). The inputs 
to the integral manipulation system are assumed to  be the actuator 
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torques 7 ( t ) ;  moreover, the grasp is assumed static, i.e. the matrices 
D, G, and K do not vary as long 85 the grip on the object is held. 

In both cases, we desire to  obtain the goal while minimising the 
cost function defined in the preceding section, so as to  comply with 
the constraints on grasp forces, and maximize the grasp robustness. 
We assume in the following that  both the desired interactions and the 
disturbance forces and torques are fearible, i.e. that there exists a t  
least one possible solution to  the grasp equation (2) with constraints 
(6), (7), and (8). The inputs t o  the integral manipulation system are 
assumed to be the actuator torques ~ ( t ) .  

Claim. Assuming that a stable grasp is disturbed by 
forces and torques Wd(f) that remain resistible for any f, 
and have bounded derivatives llwdll 5 6, there exists a 
X > 0 such that ,  for C > X and for any positive definite 
h x h matrix Z, the control law 

I 6 

I 

I Optimization AlgorithmJ 
L-----------,,,- 

I 
I 1  

Figure 2: Block diagram of the optimal control method with direct 
disturbance compensation, based on force sensor feedback. 

ensures that  the object equilibrium is maintained, while 
asymptotically converging to an arbitrarily small neighbor- 
hood of an optimal (in the sense of (22)) set of grasp vari- 
ables. 

Proof. Consider the time derivative of the positive-definite Lya- 
punov candidate function V defined in (22), 

where 

Let C = {y E sZh( 
that 
any bounded-derivative disturbance by choosing 

= 0) be the locus of optimising solutions. Note 

can be made negative outside an +neighborhood B(c) of C for 

(33) 

where llella = minye+) 11$$11, and c i s  the minimum singular value 

of 2. Recalling that is positive semi-definite for any y E n, the 
convergence to  B(c)  is therefore guaranteed, q.e.d. 

With regard to  this control law, the following points should be noted: 

In (29), i t  is assumed that wd(t)  is known. This can be ac- 
complished e.g. by using a wrist force/torque sensor, or simply 
summing the contact forces and torques measured by the contact 
sensors placed on the robot arm surfaces. Fig.2 shows a block 
diagram relative to this implementation. 

However, since force/torqne sensing devices are rather slow, a 
detailed analysis of the effect of measurement time-lags on the 

Figure 3: Block diagram of the hybrid optimal control method. The 
"dynamics" block refer to  dynamical properties of the arm-object- 
environment system. 

control stability should be considered in this case. In alternative 
to measuring the disturbance forces, the optimal grasp control 
law (29) can be implemented using conventional joint position 
servos as depicted in fig.3. 

In fact, the position controllers provide torques that tend to re- 
store the positional errors due to the disturbanee w d ( f ) .  Such 
torques cause a particular solution i d  of the  gxasp balance equa- 
tion (2) to  be applied a t  the contacts. A suitable tuning of 
the stiffness matrix K (achieved through adjusting position servo 
gains) guarantees that  the contact forces and torques due to  the 
position controllers have no components in the null space of the 
grasp matrix G. On the other hand, according to  the discussion 
in section 3, optimizing grasp forces must be chosen in the null 
space of G. Therefore, the optimizing torques can be superim- 
posed to  the position control torques, thus realising an hybrid 
optimal grasp controller. Also note that a rather stiff joint po- 
sition control will prevent significant perturbations of the grasp 
configuration, so that the static grasp assumption is not violated. 

In practice, starting with a "wrong" initial guess of yo, such that 
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Figure 4: Plot of control torque history during algorithm iterations for 
the first example. 
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some constraint is violated, may prevent the algorithm conver- 
gence and may cause the invalidation of the static grasp assump- 
tion. It is the task of a grasp planner to  provide good initial 
guesses for grasp forces. 

Although the control algorithm has been discussed in the contin- 
uous time domain, it is straightforward t o  derive its discrete time 
analog. In this case, however, the global asymptotic convergence 
of the algorithm can be proven only for values of ( smaller than 
a limit value, whose evaluation in real-time is not simple. A sim- 
ple way to  manage C is t o  reduce it whenever the cost function 
value a t  the current step is higher than the previous one. This 
simple method works well in almost all non-pathological cases, 
but there are cases where it does not converge. Such limitations 
on ( will only allow the convergence to  a finite neighborhood of 
the optimal grasp. However, the optimum is always reached a t  
the steady-state equilibrium. 

The performance of the above optimization algorithm may be 
rather poor in high-dimensional problems. Substituting ( 3 1 )  with 
the solution of the system of linear equations 

- "  

(34) 

provides a much faster convergent algorithm, although some care 
is needed in the vicinity of singularities of the hessian matrix. 

6 Simulation 
In this section simulation results relative to  the simple example of fig.1 
and to  a more complex hand will be discussed, showing the dynamical 
performance of the proposed control algorithm. 

Assume that the object grasped by the hand of fig.1 with a = 
1 m,  is subject to an external force step of intensity 4.0 N applied 
in the I direction a t  point d = (012)T m. The applied disturbance 
results wd = (4 0 0 0 8 - 4)T N-Nm. Let the friction coefficients 
be p1 = pz = 0.7, and the minimum and maximum contact forces be 
fl,,,,in = fz,,,,,,, = 0.1 N, and fl,ma. = f~,,,~. = 10.0 N, respectively. 

In fig.4 and fig.5 are shown the torque control input on the ma- 
nipulator joint corresponding to the proposed control scheme output 
with different initial conditions. The optimal torque of -7.7371 Nm 
is reached a t  the steady-state after few iterations. 

-7.7 

-7.15 

-7 8 

-7 85 

8 

Figure 5: Plot of control torque history starting from an over-estimate 
of optimal contact forces. 

+ 
X 

Figure 6: Power grasp with a two fingered hand. 

As a second example, consider the hand depicted in fig.6, where 
two three-jointed fingers hold an object using their first and last links. 
Contact points are located a t  c1 = (0 0 I)T cm, c2 = ( 2  0 cm, 
c a  = (0 3 l)T cm, and ca = (2  3 l)T cm; the corresponding normal 
unit vectors are nl = (1 o o ) ~ ,  n2 = (-1 o o ) ~ ,  n3 = (I o o ) ~ ,  
n 4  = (-1 0 O)T. The D matrix relating contact forces to  joint torques 
for this case is 

I i 0 - 1 - 1 0  0 0 

0 0 0 0 0 0  
- 1 0  0 0 0 0 
0 0 0 0 0 0  

while the grasp matrix is 
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1 1 0 0  0 1 0  
0 1 0 - 1  0 0 
0 0 1  0 0 0 
1 0 0 0  1 0  
0 1 0 - 1  0 2 

*=  

G T =  
1 0 0  
0 1 0  
0 0 1  
1 0 0  
0 1 0  I 0 0 1  

0 0 1  0 0 0  
-1 0 0 5.7 0 0 
0 1 0 -2 -1 -1 
0 0 - 1 0  0 0 
1 0 0 3 -1.3 0 ‘ 
0 - 1 0  2 1 - 1  
0 0 - 1 0  0 0 
-1 0 0 -5.7 0 0 
0 -1 0 -2 -1 1 

0 
0 
-1 
3 
0 

-1 
3 

-2 
1 
0 
0 
1 
0 

-2 

-3 
2 :! 0 

E =  0 0 - 1  0 
1 0 0  3 
0 - 1 0  2 
0 0 - 1  0 

-1 0 0 -6.7 
0 -1 0 -2 

, o o  1 0  

In fig.7 a plot of the control torques generated by the law (29) with 
modification (34) is reported, simulating the response to an external 
force disturbance step of intensity 1 N applied in the z direction a t  
point d = (1 1.5 l)T cm. The friction coefficients are assumed equal 
everywhere to /it = 0.7, and minimum and maximum contact forces are 
0.1 N and 10.0 N,  respectively, at each contact. Initial conditions on 
the optimizing vector y are yo = (200 0 0 20)T. The convergence of y 
to  an optimal value of y = (573.3 146.1 - 40.8 204.5)T, corresponding 
to  joint torques 7 = (0 77.1 77.1 0 77.1 Ncm, is shown in the plot. 

7 Conclusion 
In this paper the problem of optimal control of grasp forces is ana- 
lyzed, with particular attention to  those manipulation systems that do 
not possess full mobility a t  each link involved in the grasp. For dealing 
with these systems, it is necessary to  characterise the grasp forces that 
are internal and controllable: an algorithm for finding a basis of the 
subspace of such grasp forces is a contribution of this paper. An appli- 
cation of this result to  the minimization of the slippage risk in a grasp 
is also presented, which exploits the convenient explicitation of linear 
constraints to  obtain a control algorithm that efficiently converges to 
the optimal values of the joint torques. Finally, some simulations of 
the proposed algorithm have been presented. 
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Figure 7: Plot of control torques for the second example. 
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