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Abstract—A coordination protocol for systems of
unmanned marine vehicles is proposed for protection
against asymmetric threats. The problem is first mod-
elled in a game theoretic framework, as a potential
game. Then an extension of existing learning algo-
rithms is proposed to address the problem of tracking
the possibly moving threat. The approach is evaluated
in scenarios of different geometric complexity such
as open sea, bay, and harbours. Performance of the
approach is evaluated in terms of a security index that
will allow us to obtain a tool for team sizing. The tool
provides the minimum number of marine vehicles to
be used in the system, given a desired security level
to be guaranteed and the maximum threat velocity.

I. Introduction
The problem of detecting and accordingly reacting

to an asymmetric threat1 in marine environments is a
challenge both from research and technological points of
view [1].

Surveillance sensors, currently available on naval plat-
forms, have reached a high level of performance in
nominal working conditions [2]. However, they remain
insufficient in real–world applications [3], [4] (e.g. in case
of obstruction to sensor systems line–of–sight, or in case
of adverse weather conditions) leading to a drastically
reduced available time–to–reaction that may increase
the possibility of human errors, especially in stressful
situations.

The goal of innovative surveillance systems is hence to
guarantee an adequate supervised area in any working
conditions. In this paper, we tackle such area monitoring
problem assuming that every region of the environment
can not be under the robots sensor footprint (i.e. moni-
tored) at every time instant (e.g. the scenario in Fig. 1).

In case of a static environment (e.g. fixed threats or
points of interest in general) the monitoring problem
has been largely studied, see e.g. [5], [6]. The goal of
these algorithms is to converge to a static configuration
maximizing the area monitored by the robot sensors’
footprints. On the other hand, dynamic monitoring al-
gorithms have been designed to explore the entire area
without selecting the sub–regions of major interest [7] or
doing it with high communication costs [8].

1Asymmetric threats are a version of not "fighting fair", which
can include the use of surprise in all its operational and strategic
dimensions and the use of weapons in unplanned ways.

Fig. 1: Example of an asymmetric threat detected by a
team of marine autonomous robots. The team of robots must
efficiently monitor the area around the ship.

We focus on the problem of steering the team of robots
to monitor a sea area where communication between
robots is reduced, for example for security issues or
deteriorated communication channels (e.g. in case of
underwater vehicles). It is worth noting that the same
approach can be used in several different application
scenarios where the goal is to detect, localize and react to
any environmental changes of interest, e.g. high variation
of temperature, water pollution, etc.

The coordination protocol developed in this paper
takes into account all those aspects in the unifying
framework of game theory. Indeed, it is well known that
the particular class of potential games solves several
cooperative control problems with a reduced amount
of communication between robots [9]. In particular, the
considered control problem can be transformed, with a
game theoretic approach, into a non–cooperative game
where the goal is to reach specific equilibria. Moreover,
in case of “payoff–based” scenarios [10], i.e., scenarios in
which robots get a reward in the reached regions based
on the action performed by other robots, it has been
proved that there exist learning algorithms that can lead
to Nash Equilibria [11]. Based on those considerations a
novel formulation of the monitoring problem, in presence
of moving points of interest, is proposed.

Among learning algorithms for static environment,
the Distributed Inhomogeneous Synchronous Learn-
ing [6] (DISL) has been developed. Such algorithm, un-
der strict conditions, guarantees that the robots system
reaches a configuration of equilibrium that corresponds
to a maximizer of the potential function. A drawback
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of DISL is that it has not been designed to deal with
dynamical environments where the points of interest may
move or change in time.

In this paper, the DISL algorithm is modified to cope
with environments characterized by high rates of dynam-
icity, i.e., high velocity of the threat or fast modification
in the points of interest with respect to robot speed.
More formally, we refer to a high dynamic environment
whenever the team of robots is not able to reach a steady
configuration before a change in the environment is de-
tected. The proposed modification allows robots to react
efficiently to environmental changes. As a consequence
teams of unmanned marine robots can track a threat
without knowing a priori its behaviour, as in case of
asymmetric threats.

Finally, the algorithm is evaluated through Monte
Carlo simulations in case of scenarios of different geo-
metric complexity such as open sea, bay, and harbours.
Moreover, the performance is analysed in terms of a
security index that provides a tool for team sizing.
Indeed, given the maximum threat velocity, we are able
to determine the minimum number of marine robots to
be used in the system guaranteeing a desired security
level of the area.

The paper is organized as follows. The dynamic mon-
itoring problem is first introduced in Section II while
it is formulated as a potential game in Section III.
In Section IV the proposed algorithm is reported as a
modification of the DISL learning algorithm. Finally in
Section V the simulation results are reported, while in
Section VI the proposed tool is described.

II. Dynamic Monitoring Problem

To solve the problem of multi-robot coordination
against asymmetric threat, we first formalize the problem
as a monitoring problem. In order to track moving
threats, we are interest in dynamic monitoring formu-
lations that are different from existing ones such as [12].
Moreover, we are interested in including the sensing
model in the problem formalization. For those purposes
we first consider a discretized workspace (e.g. a sea area).
Each sub–region is associated with its centre position q ∈
Rp (p = 2 for terrestrial vehicles, p = 3 for underwater or
aerial vehicles). Let Q be the collection of all the labels
q in the discretization. Furthermore, consider the graph
G = (Q, E) where (q, q′) ∈ E if and only if the sub–
regions q and q′ are adjacent. The graph G is assumed
to be fixed and connected.

The N robots are deployed in Q to monitor areas of
interest based on sensor footprints. Let V be the set of
robot identifiers, each robot i is modeled as a point mass
in Q, with location qi ∈ Q. Each robot has on board
sensors that scan a limited portion of its neighbourhood.
Moreover, the scan operation has associated cost in terms
of energy consumption that is roughly proportional to
the scanned area, as it occurs in case of radar and sonar–
like sensors.

Fig. 2: Example of 2D–sensor footprint: h is the sensor
orientation, v is the amplitude of view, while R and r are
the maximum and minimum scanning range respectively.

We assume that the footprint of the sensor is direc-
tional, has limited range, and has a finite angle of view
centred at the sensor position. Following a geometric
simplification, we model the sensing region of robot i as a
truncated cone in the p–dimensional space, see Fig.2 for
p = 2. The sensor footprint is completely characterized
by the following parameters:
• the position of robot i, qi ∈ Q;
• the sensor orientation, given by an angle hi ∈ [0, 2π);
• the angle of view, vi ∈ [vmin, vmax];
• and the shortest range r (respectively, longest

range R) between robot i and the nearest (respec-
tively, farthest) object that can be identified by
scanning the sensor footprint, ri, Ri ∈ [rmin, rmax]
with ri < Ri.

We assume that each robot can set its own sensor
parameters ri, Ri, vi, hi influencing the cost associated
to the sensor operation as shown in next section. In
other words ci = (ri, Ri, vi, hi) ∈ C = [rmin, rmax]2 ×
[vmin, vmax] × [0, 2π) is the sensor configuration vector
of robot i. We set xi = (qi, ci) as the state of the i-th
robot which comprehends both the position qi ∈ Q and
the sensors configuration ci ∈ C.

Let X be the configuration space of the robots and
x = (x1, . . . , xN ) ∈ X the vector of the current robots
configurations. In order to maximize the dimension of the
area currently monitored by the N robots, we want to
avoid to have more than one robot monitoring the same
sub–region q. To this purpose we introduce the notion of
neighbour:

Definition 1 (Robot Neighbour). Let D(xi) be the
sensors footprint of robot i in Q. The set of neighbours
of robot i, is Ni(x) = {j ∈ V \{i}|D(xi) ∩ D(xj) 6= ∅},
i.e. the set of robots that monitor one of the sub–regions
monitored by robot i, see Fig. 3.

Based on the number of neighbouring robots, robot i



1 2

q

(a)

1
2

(b)

Fig. 3: Following Definition 1, in (a) Neighboring robots,
while in (b) Non–neighboring robots.

should move to minimize its neighbours. The neighbour
concept is hence used to differentiate robots that influ-
ence the movement of robot i from those that do not.

In order to formalize the presence of a threat in the
environment we now introduce an interest function W
that corresponds to the level of criticality of each sub–
region of Q, i.e. the probability to find a threat in
the sub–region. However, each robot does not have the
knowledge of the value of the interest function in any
sub–region until monitored by the robot itself.

Definition 2 (Interest Function). The interest function
W : Z+ → R|Q| is the function which assigns to every
time instant the vector W (t) = (Wq1 ,Wq2 , . . . ) ∈ R|Q|
where Wqi ∈ R is the element relative to the sub–region
(with centre) qi ∈ Q.

Each robot is assumed to be able to determine the
value Wq ≥ 0 for each and only those q inside its sensor
footprint. Moreover, we suppose that two robots that
are monitoring the same sub–region determine the same
Wq. As mentioned, values Wq can be interpreted as the
probability of finding intruders in the monitored sub–
region. Larger values of Wq correspond to sub–region of
higher interest, while, when Wq = 0 the sub–region q is
of no interest or does not belong to the sensor footprint.
Hence, the limited sensing capabilities are encoded in the
fact that the interest function W is not fully known by
the robots. Indeed, the problem we tackle is a partially
observable problem, i.e., each robot only has access to
limited information regarding its surrounding environ-
ment. How such value Wq is computed by robots can be
based on distributed supervisor based techniques that are
out of the target of this paper, see e.g. [13].

It is worth noting that in asymmetric threats, intruders
are supposed to be able to move in the area. Such
dynamic environment characteristic is encoded in the
time varying property of the interest function W (t).
The problem we want to solve is hence to coordinate

a multi–robot system to monitor only those sub–regions
with highest probability of finding a threats inside them.
For this purpose, we now define an optimal control
problem in which a given quality measure is maximized.

Problem (Dynamic Monitoring Problem). Given a
space graph G = (Q, E), an interest function W :
Z+ → R|Q| and a quality measure φ : R|Q|×X → R, the
dynamic monitoring problem is the problem to find an

evolution function π, representing the resulting closed–
loops dynamic, feasible with respect to the dynamic of
every robot (e.g. limited range of movements in one time
step), such that{
π∗ = argmin

π

∑
t ‖φ(W (t), x(t))−maxy∈X φ(W (t), y)‖2

s.t. x(t+ 1) = π(W (t), x(t)).
(1)

An example of quality measure associated to the mon-
itoring problem is

φ(W (t), x) =
∑
q∈Q

nq(x)∑
l=1

Wq(t)
l

,

where nq(x) is the cardinality of the set
{k ∈ V |q ∈ D(xk)}, i.e., the number of robots currently
monitoring sub–region q. The function φ can take into
account also a local cost function fi that depends only
on robot configuration xi. Those functions can be used
to model private costs such as the energy consumption
of the robot.

For example, a cost that can be associated with the
use of the sensor is fi(xi) = fi(ci) = kvi

(
R2
i − r2

i

)
, i.e.

proportional to the area of the sensor footprint as occurs
with radar and sonar–like sensors.

To conclude, in this paper we consider the following
quality measure φ:

φ(W (t), x) =
∑
q∈Q

nq(x)∑
l=1

Wq(t)
l
−

n∑
i=1

fi(xi). (2)

With this choice, the function π∗, solution of the
optimal control problem, is such that the probability of
the event {q ∈ ∪Ni=1D(xi(t))} (i.e., “the sub–region q is in
the footprint of at least one robot”) increases withWq(t).

III. Game Theoretic Formulation
In this paper we tackle the dynamic monitoring prob-

lem in (1) with a game-theoretic approach whose basic
concepts are now introduced for reader convenience.
Refer to [14] for a more comprehensive introduction.

The first concept of the game theory is the set of
player (e.g. unmanned marine robots) that we indicates
with V = {1, . . . , N}. The collective action set A is
denoted with A = A1×· · ·×AN , where Ai is a finite set
of actions for robot i ∈ V . The function ui : A→ R is the
utility function of robot i ∈ V and each robot behaves so
as to maximize ui. The function Ri : Ai → 2Ai provides
a so-called constrained action set, e.g. corresponding
to kinematic constraints. The joint action of the group
is denoted by a = (a1, . . . , aN ) ∈ A and
the collection of actions other than robot i by a−i =
(a1, . . . , ai−1, ai+1, . . . , aN ), hence a = (ai, a−i).

Due to the limited knowledge on the environment,
the utility function ui of each robot depends on the
neighbour set and on local available information. To solve
the dynamic monitoring problem, the benefit that robot
i obtains through sensing is chosen as

∑
q∈D(xi)

Wq(t)
nq(x) .



Such utility function splits the benefit Wq(t) among all
the robots that monitor the same sub–region q. The
purpose of this choice is to give robot a boost to move
toward, and then monitor, areas with highest value
of Wq(t) shared with as less robots as possible, i.e. small
values of nq(x). In the considered framework each robot
is supposed to gain a reward while monitoring sub–
regions but at some price (e.g. energy consumption).
The capture of this trade-off is the scope of the utility
functions of robot i:

ui(W,x) =
∑

q∈D(xi)

Wq(t)
nq(x) − fi(xi), (3)

where nq(x) can be distributively computed or obtained
based on sensor capabilities. The utility function ui is
distributed along the team, because it only depends on
the points q within the sensing range D(xi) and the
actions of {i} ∪ Ni(x).

The monitoring problem can be defined as a con-
strained game Γ = (V,X, {ui}i∈V , {Ri}i∈V ) where the
set of the collective actions is the state space X and the
action selection rules are limited by reachability charac-
teristics of the robot kinematics {Ri}i∈V . For example,
limited selection rules represent the presence of possible
obstacles or the constraint on the maximum allowed
speed.

Proposition 1. The monitoring game Γ is a constrained
potential game with potential function defined in (2).

The proof is omitted for the sake of brevity. It is based
on a direct verification of the potential game definition
following a procedure similar to those used in [9].

As a consequence of Proposition 1, the set of pure
constrained Nash equilibria (in the following, CNE) of
the dynamic monitoring game Γ is not an empty set [10].
In the following we briefly report an algorithm that

reach pure CNE of constrained potential games.

A. DISL Learning Algorithm
In case of a time invariant interest function W there

exist several algorithms that converge toward a CNE.
We now briefly present the Distributed Inhomogeneous
Synchronous Learning (DISL) algorithm, [6] that will be
next modified to cope with a time varying W (t), i.e. in
case of dynamic environment.

At each iteration t ∈ Z+, the DISL algorithm chooses
an action according to a specific procedure assuming that
each robot i ∈ V stores last two chosen actions xi(t−1),
xi(t) (i.e., its last two states) and the outcomes ui(x(t−
1)) and ui(x(t)) (i.e., the associated gains). The main
steps of the algorithms are:

1) At t = 0, all robots are placed inQ and sensors con-
figurations are initialized. Each robot i computes
its neighbourhood and ui(x(0)).

2) At each time t ≥ 1 each robot i executes its
action (moves in a configuration and sets its sensor
footprint) following a specific learning rule.

3) At the new state, every robot computes its neigh-
bours, utility function and next feasible action set.
The process is repeated from point 2.

In step 2 each robot updates a parameter ε called
exploration rate based on

ε(t) = t−
1

N(D+1) , (4)

where D is the diameter of the graph G = (Q, E), i.e.
a measure of the environment discretization, and N is
the number of robots. Such parameter is the probability
of experimentation: when robot i experiments, it chooses
next action uniformly from the set of feasible actions,
excluded the action with the best utility collected in the
last two past steps. On the other hand, with probability
1− ε, the robot i does not experiment, i.e., it chooses as
next action the one with highest utility in the last two
steps.

In [6] it is shown that while playing a constrained
potential game Γ with DISL rules the team of robots
converges to a state that corresponds to a CNE. This
holds if every action can be reversed (reversibility) and
every sub–regions of the environment can be reached in
a finite time (feasibility). For those reasons in the rest of
the paper, we assume the reversibility and the feasibility
of the constrain action functions {Ri}i∈V .

IV. Learning algorithms in dynamic
environments

The algorithms DISL, described in previous section,
is designed for static environments, i.e., constant W . In
this section, we tackle the problem of design learning
algorithms in dynamic environments.

A. Homogeneous algorithms
The convergence of DISL, in the static environment

framework, depends on the convergence to zero of the
the parameter ε that is updated based on (4). However,
this update rule takes long time to reach a sufficiently
small ε when the size of the game, in terms of the number
of robots (N) and of the space graph diameter (D), is
large. Thus, from the practical point of view we might
require to decrease ε based on heuristic or use algorithms
with sufficiently small and constant ε. Homogeneous
algorithms are those in which the parameter ε is constant.

In this section, the Distributed Homogeneous Syn-
chronous Learning Algorithms (DHSL) is proposed to
solve the monitoring problem in dynamic environments.
It is worth noting that the convergence of DISL algorithm
in dynamic environment has not yet been proved. On the
other hand, for homogeneous algorithms and in particu-
lar for DHSL, the convergence can not be ensured even
in static environments. However, it holds the following:

Proposition 2. Consider a constrained potential game
Γ and suppose that each robot behaves according to the
DHSL algorithm. Then, given any probability 0 < p <
1, if the exploration rate ε is sufficiently small, for all
sufficiently large time t ∈ Z+, the configuration of robots
leads to a CNE with probability greater than p.



Also in this case the proof is omitted for the sake of
brevity. It is based on a direct computation of the proba-
bility of reaching particular states following a procedure
similar to those used in [10].

Proposition 2 provide theoretical foundations to the
proposed extension and the application of DHSL in dy-
namic environments. Indeed, the proposition assures that
the optimal actions are selected with high probability if
the final value of the exploration rate is sufficiently small.

B. Validation of homogeneous algorithm in static envi-
ronment

To determine the best value of the exploration rate ε,
we evaluate in simulations how the required performance
changes with respect to ε. For this purpose, the algorithm
has been tested for different ε ∈ [0.01, 0.3] and different
number of robots N ∈ {5, 10, 15, 20}, in a static envi-
ronment with 400 sub–regions representing the open sea
scenario. Moreover, for any values of ε and N , 50 random
initial conditions have been considered.
The robot sensor footprint considered in this set of
simulations is a circle centred on the robot and of radius
corresponding to the dimension of two sub–regions. The
interest functionW is a Gaussian density function whose
mean is fixed at the centre of the space Q and variance
is 25. Each robot i optimizes the utility function ui
defined in (3) where fi is supposed to be constant and
equal for every robots.

Fig. 4 reports the results of the simulations as a
function of the exploration rates ε. The Fig. 4a shows
the time to reach a steady configuration, i.e., a CNE
configuration, for different ε. On the other hand, the
Fig. 4b shows the difference between the reached value
and the maximum of the potential function, i.e., the value
of the potential in the CNE. Such difference represents
a mean error with respect to the optimal value of the
potential function.

Simulations show that by increasing the exploration
rate, the time of convergence to a CNE configuration
decreases while the CNE can be reached with decreasing
probability. Hence, the displacement with respect to the
steady configuration increases with ε. Based on those
results, the chosen value of ε is a trade–off between
the convergence time and the mean potential error. The
value ε = 0.1 has been chosen, for the next sets of
simulations, due to the limited variation of the two
examined indexes around that value.

V. Simulations in dynamic environments
As mentioned, in case of protection against asym-

metric threats, relevant situations are those where an
interesting subject have to be tracked. To tackle the
problem, we consider interest function W as a Gaussian
density function whose mean changes in time. Hence,
in the following set of simulations, W (t) is supposed to
shift any M time steps, i.e., M−1 may represent the
intruder velocity. If M is such that the system can not
reach the steady states, a reasonable choice is still to

(a)

(b)

Fig. 4: (a) Time of convergence to a CNE configuration
and (b) displacement with respect to the CNE, with
respect to ε.

generate an evolution that tends to the optimal value
of the potential function, defined in (2), with the current
state ofW (t). Since the evolution of the interest function
W (t) is unknown and unpredictable by robots, learning
algorithms has to allow robots to maximize the reward
received by the current, available, W (t).

We are interested to evaluate the proposed algorithm
in different scenarios. In particular three scenarios char-
acterized by different degrees of convexity are considered
(convexity measure is described in [15]), see Fig. 5. Such
kind of scenario represents a limited area in an open sea
environment, C = 1, in presence of an island, C = 0.75,
and in an harbour, C = 0.43.
To the authors best knowledge there is no proof of

convergence of learning algorithm in dynamic environ-
ments. Hence, the convergence in dynamical context is
now tested with Monte Carlo based simulations.
Simulation Setup

The DHSL algorithm has been tested for different
values M ∈ {1, . . . , 10} at which the interest W
function changes (i.e., for different intruder velocities)
and for different number of robots N ∈ {5, 10, 15, 20}.
The exploration rate is ε = 0.1. Each simulation has been
run for 104 time steps. Moreover, for any values ofM and
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Fig. 5: Considered scenarios are characterized by differ-
ent degrees of convexity C, decreasing from the left to
right: Ca = 1, Cb = 0.75, Cc = 0.43, respectively. See [15]
for details on convexity measure.

N , 50 random initial conditions have been considered.
The robot sensor footprint is the same as the one used
in previous section. Each robot i optimizes the utility
function ui defined in (3) where fi is supposed constant
and equal for every robots. The free space of each
scenario has been discretized in 400 sub–regions. Higher
number of discretized sub–regions would require a higher
number of robots to maintain the same performance. In
the experiments, we use the following Gaussian density
function whose mean µ(t) randomly shifts everyM steps,
moving from a sub–region to the adjacent:

W (q) = e−
||q−µ(t)||2

2σ2 , σ = 5. (5)

Simulation Results
To evaluate the DHSL algorithm, we use the error

index I ∈ [0, 1] defined as follow

I(T ) = 1− 1
T

T∑
t=1

∑
i∈V ui(t)∑
q∈QWq(t)

(6)

where ui(t) is the utility of robot i and T ∈ Z+ is the time
step. The proposed index I represents the cumulative
error and it is inspired to the well known IAE index. It
depends on the total benefit of the scenario (determined
by theW in the whole environment) and the total benefit
reached by the team (determined by the robot utility
functions ui).

Graphic in Fig. 6 shows how the mean of the error
decreases when the intruder velocity decreases. Notice
that, as expected, the value of the mean error at steady
state is coincident with the one obtained in the static
case. It is worth noting that the mean error decreases
despite of the number of robots N and the geometry of
the scenario.

Simulations have shown that the error variance does
not change with N . On the other hand, it increases in
non–convex scenarios (bay and harbour) with respect
to the convex one (i.e., open sea) and in the harbour
scenario with respect to the bay one. Moreover, the mean
error grows with loss of convexity. Despite this, Fig. 6
shows a regularity with respect to the variation over the
intruder velocity M and the number of robots N .

VI. Team Sizing Tool
Based on the results obtained in the simulations, we

now propose a tool to design the multi–robot system:
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Fig. 6: Mean error evolution over different intruder veloc-
ities (M) and number of robots (N), for DHSL algorithm.

the minimum number of robots of the team (N) is a
function of the intruder velocity (M) and the security
index (i.e., rate of coverage) of the area. The similari-
ties in the convergence behaviour presented in previous
section permit a collective representation of performance
evolution, which is presented in Fig. 7. The graph is
composed by the overlapping of the iso–level curves of
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Fig. 7: Tool for design the size of the team of robots: the
minimal number of robots is identified with the maximum
intruder velocity and the maximal security index of the area.

the mean error fitting function in the three scenarios.
The chosen error fitting function is:

(1− S)e−(aMbNc) + S (7)

where, for every scenario, S is the estimated static error
that is the minimum mean error obtained with Mmax

and Nmax and a, b and c are the fitting parameters. The
chosen fitting function is motivated, in addition to the
error evolution, also by the facts that error needs to be 1
when M or N is zero and S when M or N grows to
infinity. The values in Fig. 7 are referred to the triplet of
curves of same colour. The triplets are composed by α-
level with α = rS, where the label r (the security index
of the area) indicates how much the error is worse than
the static case S.
Fig. 7 has been designed as a tool to determine the

size of the team of robots. Indeed, the minimal number
of robots in a team is function of the maximum intruder
velocity and the maximum security index accepted. For
example, settingM ≥ 5 and the maximum security index
equals to 7, the minimum number of robots, to guarantee
the desired performance, is between 4 and 6.

VII. Conclusions
The problem of coordinating a system of unmanned

marine vehicles for protection against asymmetric
threats has been modelled as a potential games. A
learning algorithm has been extended in case of dynamic
environment to allow robots to track an intruder. The
proposed extension has been evaluated in simulation in
different scenarios. The simulation results are used to
generate a tool to size the team (N) based on intruders
characteristics (M) while maintaining a given level of
performance. As a future work is the formal proof of
convergence of the proposed algorithm in case of dynamic
environments.
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