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Abstract
In this paper we consider the problem of maneuvering an autonomous
robot in complex unknown environments using vision. The goal is to
accurately servo a wheeled vehicle to a desired posture using only
feedback from an on-board camera, taking into account the non-
holonomic nature of the vehicle kinematics and the limited field-of-
view of the camera. With respect to existing visual servoing schemes,
which achieve similar goals locally (i.e. when the desired and actual
camera views are sufficiently similar), we propose a method to visu-
ally navigate the robot through an extended visual map before even-
tually reaching the desired goal. The map comprises a set of images,
previously stored in an exploratory phase, that convey both topolog-
ical and metric information regarding the connectivity through fea-
sible robot paths and the geometry of the environment, respectively.
Experimental results on a laboratory setup are reported showing the
practicality of the proposed approach.

KEY WORDS—cooperation, mobile robots, simultaneous lo-
calization and mapping, visual servoing

1. Introduction

One of the main obstacles that still hinder penetration of mo-
bile robots into wide consumer markets is the unavailability
of powerful, versatile and cheap sensing. Vision technology
is potentially a clear winner as far as the ratio of information
provided versus cost is considered. Cameras of acceptable ac-
curacy are currently sold at a price which is one to two orders
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of magnitude less than, for example, laser scanners. As a con-
sequence, much attention is being devoted to solving the non-
trivial problem of using visual information for controlling and
localizing robots in a visually mapped environment.

This paper deals with the problem of using off-the-shelf
cameras fixed on inexpensive mobile platforms to enable nav-
igation and accurate control to goal configurations in space
based on visual maps of the environment, which can be con-
textually built in the process. To this purpose, powerful tools
have been recently provided in the research literature in three
main fields: autonomous vehicle localization and map build-
ing, visual feature processing and visual servoing for mobile
robots. Our effort is mainly focused on the integration of vi-
sual servoing techniques for wheeled vehicles with advanced
techniques for exploring and representing the environment.

Visual servoing of vehicles is an attractive solution for the
estimation/control problem when implementing feedback di-
rectly on output measurements, i.e. grabbed images. Different
settings have been considered in the visual servoing literature,
using omnidirectional cameras (Thompson et al. 1999� Hadj-
Abdefkader et al. 2006� Mariottini et af. 2006), pan-tilt heads
(Tsakiris et af. 1997�Hespanha 2000), zooming cameras (Ben-
himane and Mafis 2003) or cameras carried by an articulated
arm mounted on the robot (Tsakiris et al. 1997b).

In this paper, however, we assume the use of conventional
cameras fixed on-board. This solution, which is the simplest
and most economically viable, is also the most challenging
from a technical point of view. The combination of the pro-
jective geometry underpinning camera information generation
and the non-holonomic kinematics of wheeled vehicles pro-
duces an intrinsically nonlinear dynamical system, whose sta-
bilization has attracted the attention of researchers since the
last decade (Hashimoto and Noritsugu 1997� Conti-celli et al.
2000). An even harder set of problems is posed by conven-
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tional cameras fixed on-board, because of the limited field-
of-view (FOV) constraint they impose on the motion of im-
age features while the vehicle maneuvers. Visual servoing with
FOV constraints has been considered more recently in the ro-
botics literature, with the earliest contributions (to the best
of our knowledge) provided by Kantor and Rizzi (2003) and
Murrieri et al. (2002, 2004). Recent advances on optimal feed-
back control (Bhattacharya et al. 2007� López-Nicolás et al.
2007) and in servoing in the presence of obstacles (Lopes and
Koditschek 2007) were made.

To our knowledge, all methods for visual servoing have so
far focused on local stabilization i.e. the initial and desired
conditions of the system are assumed to be close enough so
that a significant number of features remain in view all along
the maneuver. In this work, we start from a modified version
of the switching visual controller for non-holonomic vehicles
with limited FOV (Murrieri et al. 2004), with the purpose of
using it to servo the vehicle in the large, i.e. across paths con-
necting totally different initial and final views.

The visual servoing in the large is thus feasible if the robot
has access to information that allows it to self-localize with re-
spect to a sufficient number of waypoints which can be used
to topologically connect the initial and desired images. More-
over, it also needs to collect sufficient metric data to reach one
waypoint from another under visual servoing. A representation
of the environment that conveys these metric and topological
information will be referred to as a hybrid visual map. The
construction of such a map, and its update with data obtained
during robot servoed operations in an uncertain environment,
are the subjects of investigation in this paper.

The literature on the problem of simultaneous visual-based
localization and map building (v-SLAM) is rather extensive
(e.g. Rekleitis et al. 2001� Chiuso et al. 2002� Davison 2003�
Royer et al. 2005) and COTS software is already available
(Karlsson et al. 2005). These results are clearly fundamental to
our goals. However, accurate servoing of a vehicle with non-
holonomic kinematics and FOV constraints is not considered
in typical v-SLAM references, and represents the main origi-
nal contribution of this paper.

Our approach in this paper consists of two main phases:
a mapping phase and a navigation phase. During the map-
ping phase, the robot collects and tracks image features ex-
tracted from the camera’s images. The initially unknown three-
dimensional (3D) positions of the image features are esti-
mated, possibly using iterated robot motions until the estimate
accuracy reaches a desired level. The estimates of the features’
positions are represented in the metric map, while robot ini-
tial pose can be connected with the final pose of the mapping
process with a link to a new node in the topological map. Dur-
ing the navigation phase, which relies on visual servoing, the
robot traverses the waypoints saved in the map while it lo-
calizes itself and updates the map information. In the follow-
ing, we describe the components of the described strategy in
detail.

2. Notation

Let �W � denote a global reference frame with respect to which
all features are motionless (see Figure 1). Consider a calibrated
monocular camera fixed onboard the vehicle, and let �C� de-
note the camera frame. We assume that the principal axis of
the camera, denoted by Zc, is aligned with the forward motion
direction of the vehicle. Without loss of generality, we also
assume that in the initial position, the origin of �W � and �C�
coincide, and that X� � Zc and Y� � Yc.

Let the robot’s posture be denoted W � � W [� 1� � 2� � 3]T �
�2�S. More precisely, (� 1,� 2) are the cartesian coordinates of
the middle point of the vehicle and � 3 is the angle between the
Zc axis and the X� axis (Figure 2). Let the absolute position
of the i th feature be W Pi �W [pi

1� pi
2� pi

3]T � �3.
The position �xi � yi � of the features in the image plane is

described by the well-known perspective projection mapping
� : �3 ��2

� : C Pi �
�
� xi

yi

�
� �

�
�����
�x

C pi
1

C pi
3

�y

C pi
2

C pi
3

�
������ (1)

where �x and �y are camera calibration parameters represent-
ing the focal length multiplied by the pixel dimension scale
factor for each axis of the image. The coordinates of the i th
feature point in the camera frame �C� is C Pi �C [pi

1� pi
2� pi

3]T .
Let IA denote the image observed from a given robot po-

sition W � A (or A for short), and let FA denote a set of fea-
tures extracted from IA. We assume that a number n A of fea-
ture descriptors are included in FA, which is obtained by us-
ing a robust feature extraction algorithm based on scale invari-
ants (Se et al. 2002) (we used the implementation described in
Karlsson et al. 2005). To each feature set FA, a set of coordi-
nates in the image plane I m FA � 	[x1� y1]T � � � � � [xn A � yn A ]T 

and a set of coordinates in the world frame W FA �
	W [p1

1� p1
2� p1

3]T � � � � �W [pn A
1 � pn A

2 � pn A
3 ]T 
 are also associated.

Given two images IA and IB and their associated feature
descriptor sets FA and FB , we let FAB denote the set of cor-
responding features. More precisely, two features in FA and
FB are considered to be corresponding if their distance (as the
reciprocal of a weighted similarity, considering also e.g. lumi-
nosity or bitmap correlation) is below a chosen threshold.

3. Visual Servoing with Limited FOV

The baseline of the visual scheme adopted in this work is the
switching visual servoing scheme presented in Murrieri et al.
(2004). This controller is termed ‘hybrid’ in the previous work,
referring to the mixed continuous-discrete nature of the dy-
namics involving the physics of the robot and the supervising
logic. To avoid confusion with the mixed metric-topological
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Fig. 1. Fixed frame �W �, camera frame �C� and relative feature coordinates.

Fig. 2. Fixed frame �W �, camera frame �C�, and relative coor-
dinates �� 1� � 2� � 3� and �	� 
� ��.

nature of hybrid maps in this context, we will refer to the visual
control scheme as ‘switching’. We briefly recap the structure
and the effectiveness of the controller, while skipping proofs
and details to be found in the full article.

In the following, the image IK with corresponding image
feature positions I m FK and 3D feature positions W FK is as-
sumed to be grabbed from the robot position W � K .

Let the unicycle dynamics be described in polar coordinates
by

�
�����

�	
�

��

�
����� �

�
�����

�	 cos�

sin�

sin�

�
����� u 

�
�����

0

0

�1

�
����� �� (2)

where 	 �
�
� 2

1  � 2
2, 
 � arctan � 2� 1 and � � �  
� � 3.

Let IA denote the image observed from the robot cur-
rent position and IB denote the image from the desired ro-
bot position, which we consider to be in 	B � 
B �
0, �B � � . We assume that FAB contains at least n �
4 corresponding features, for which the coordinates I m FA

are measured on the current image, while I m FB are known
from a visual map of the environment. We temporarily as-
sume also that the coordinates in the world frame W FA �
	W [p1

1� p1
2� p1

3]T � � � � �W [pn A
1 � pn A

2 � pn A
3 ]T 
 are available to the

controller (this assumption will be removed later).
The constraint on the angle under which the camera views

the kth tracked feature I m Pk �I m [xk� yk]T is expressed in
these coordinates as

� �	� 
� �� � 
 � � � � � arctan
W pk

3  	 sin�
W pk

1  	 cos�

� arctan
I m xk

�x
� [����] (3)

where the limited FOV is described by a symmetric cone cen-
tered in the optical axis Zc with semi-aperture �.

The switching controller is expressed in a set of different
polar coordinates, which are conveniently denoted by intro-
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ducing the two vectors �� � [�� � � �� � � �� �  �� �  �]
and �
 � [
��� 
�2�� 
� 
�2�� 
]. Correspondingly, a set
of five distinct candidate Lyapunov functions can be written as

Vi �	� �� �� � 	2

2
 �
2

i

2
 ��2

i

2
� (4)

with i � 1� � � � � 5. The control law choice, i.e.�		

		�

u � cos�

� � � �� i 
sin� cos�

�� i

� �
i  �� i �
� (5)

is such that all the Lyapunov candidates have negative semi-
definite time derivatives and (by La Salle’s invariant set prin-
ciple) are asymptotically stable. These five different control
laws (parameterized by �) define in turn five different con-
trolled dynamics (analogous to Equation (2)) that are globally
asymptotically stable in the state manifold � � S2. Although
none of these control laws alone can guarantee that the FOV
constraint is satisfied throughout the parking maneuver, it is
shown that a suitable switching logic among the control laws
achieves this goal. The switching law is triggered when, dur-
ing the stabilization with one of the five control laws, a fea-
ture approaches the border of the field of view by a threshold
� j � �, i.e. when �� � � � j .

It should be noticed that the switching logic between differ-
ent controllers could be triggered ever more frequently when
	 approaches zero. To avoid this so-called Zeno phenomenon,
a dead zone is introduced in the controller for 	 � 	D , within
which the forward velocity control u is set to zero. This im-
plies that maneuvers are stopped when the desired accuracy
	D is reached.

4. Map Building

To apply the visual servoing scheme in the large, a map for the
environment has to be built. This map must contain both met-
ric information on a set of targets and waypoint images and
topological information on the physical possibility of execut-
ing a motion (with the given kinematic and FOV constraints)
from one waypoint to another. In our hybrid map representa-
tion, the metric information is represented by a set of robot
postures, along with the corresponding 3D position estimates
for the features observed from such postures. The topological
information is represented by an undirected reachability graph
(indeed, we assume that possible environment changes do not
affect the traversability of the space by the robot).

More specifically, the graph is described as G � � �F� ��� �S�
where �F is the set of features subsets FK and each FK is as-
sociated to a node K . �� is the set of poses � K , and each � K

denotes the robot posture where the image IK was taken. Fi-
nally, to each arc Si� j we associate a weight corresponding to

Fig. 3. Hybrid image map: grabbed images are indicated with a
capital letter, say IA� IB� IC . Each grabbed image corresponds
to both a certain robot configuration in the metric map (see
Figure 4) and a node in the topological map. The nodes A and
B are connected if and only if the set of features FAB � FA �
FB is not empty.

the complexity of the maneuver to reach node i from node j .
These weights could in principle be associated to minimum
time, minimum distance or minimum control effort. However,
because the actual execution of the robot motion will not fol-
low an optimal strategy, we simply used the Euclidean distance
between the nodes.

4.1. Overview of the Hybrid Map Construction Method

1. From the initial unknown position of the vehicle (i.e.
W � A � W [0� 0� 0]T ) an image IA of a portion of the
scene in view is grabbed and stored in the first node A
of the hybrid map (see Figure 3).

2. From the image in view, a subset FA of n A features is
selected.

3. The vehicle moves, avoiding obstacles with proximity
sensors, in an arbitrary direction using a simple control
law that keeps the image point features in view.

4. An extended Kalman filter is implemented using odom-
etry and camera measurements to estimate the relative
spatial position of the feature in camera frame �C�. The
estimated EKF state is

S � [Sr
1� Sr

2� Sr
3� S f

1 � S f
2 � S f

3 � � � � � S f
3n�1� S f

3n]T

� [W � 1�
W � 2�

W � 3�
C p1

1�
C p1

2�
C p1

3� � � � �
C pn

2 �
C pn

3 ]T �

i.e. the n features coordinates to estimate in the �C� cam-
era frame.
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5. Once 3D feature position estimates have converged to a
value under a given level of uncertainty determined by
the covariance matrix, the robot stops moving and a new
node corresponding to the current pose is added to the
hybrid map.

6. To add new nodes from the already created ones, the
procedure starts again from step 2.

It is important to mention that the exploration strategy is
not considered in this paper, while the focus is on both the
gathered information representation and on the visual servo-
ing control aspects. Therefore, we adopt a quite simple explo-
ration strategy to add new nodes: between step 6 and step 2, the
robot turns on the spot, choosing randomly between counter-
clockwise or clockwise rotations, until at most four features
are within the FOV (note that only robot localization is needed
at this step). Then, a new set of features is selected and esti-
mated while the robot starts moving back and forth again. An
additional image, after the robot rotation on the spot, is there-
fore also added to the map.

The described procedure is instantiated until the whole map
is constructed. Notice that the use of simple EKF estimators is
sufficient when sufficiently robust feature extraction and track-
ing techniques are available, such as was the case in our exper-
imental setting. However, should feature outliers occur in the
process, more robust filtering should be used in place of simple
EKF (e.g. Vedaldi et al. 2005� Lu et al. 2006).

In the following, we provide more details on the methods
used to build the two parts of the hybrid map.

4.1.1. Metric Data

In our experimental setup, the vehicle motion is assumed to be
constrained on the C X � C Z plane (or equivalently W X � W Z
plane). This hypothesis is correct when the robot moves at a
fixed level, e.g. on the floor of an office or factory space, and
implies that the coordinate c pi

2 � hi of each feature is constant
and represents the height of the feature on the plane of motion
(see Figure 1). The initial guess for the extended Kalman filter
is computed making the hypothesis that each feature is at the
same generic height on the plane of motion and inverting the
perspective projection Equation (1). The initial model covari-
ance matrix is block diagonal and given by:

P0 �

�
����������

Pr
0 0 � � � 0

0 P1
0 � � � 0

���
���

� � �
���

0 0 � � � Pn
0

�
����������
�

In the first mapping phase, the environment is completely
unknown. Therefore, all the entries of Pr

0 � �3�3 are set to

zero since the frame �W � is positioned in the initial robot po-
sition. Pi

0 � �3�3, �i � 1� � � � � n, are initialized depending
on feature mean estimation errors (e.g. �1 m for the feature
distance from the camera and �20 cm for the other two co-
ordinates in our experimental setting) and weighted with the
relative feature distance from the camera, since the estimation
accuracy reduces whenever the distance increases. (Note that
the i th feature distance is estimated using the hypothesis that
feature heights are fixed.)

The discrete nonlinear model of the feature dynamics and
the unicycle kinematic model are assumed for state prediction:
�
�����������������������������

�Sr
1�k  1�

�Sr
2�k  1�

�Sr
3�k  1�

�S f
1 �k  1�

�S f
2 �k  1�

�S f
3 �k  1�

���

�S f
3n�1�k  1�

�S f
3n�k  1�

�
�����������������������������

�

�
������������������������������

�Sr
1�k� cos

� �Sr
3�k� u2�k�

2


u1�k�

�Sr
2�k� sin

� �Sr
3�k� u2�k�

2


u1�k�

�Sr
3�k� u2�k�

�S f
1 �k� �S f

3 �k�u2�k�

�S f
2 �k�

�S f
3 �k�� u1�k�� �S f

1 �k�u2�k�

���

�S f
3n�1�k�

�S f
3n�k�� u1�k�� �S f

3n�1�k�u2�k�

�
������������������������������

where U�k� � [u1�k�� u2�k�]T are the encoder measurements
for forward and angular velocity, obtained from

u1�k� � R
�r �k� �l�k�

2
and

u2�k� � R
�r �k�� �l�k�

L
�

respectively. �r and �l are the rotational encoder for the right
and left wheel, R is the wheel radius and L is the length of the
wheel axle.

Two different noise sources are taken into account. The
model dynamical errors � � ��r

1� �
r
2� �

r
3� �1� �2� �3� � � � � �3n�1�

�3n�
T are modeled as additive and zero mean gaussian noises

with covariance matrix Q � P0. Systematic errors are as-
sumed to be removed by suitable calibration, hence non-zero
mean errors are not modeled. The odometry errors � r � � l , for
the right and left wheel respectively, are assumed to be zero
mean and gaussian distributed. They are also assumed to be
equal for both wheels. This is a simple but easily verified as-
sumption in respect of generic unicycle-like vehicles, and is
computed taking into account lack of accuracy in odometry
(typically due to wheels slipping and skidding). The covari-
ance matrix of the prior estimate (model prediction) is then
calculated by the formula
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Fig. 4. Metric map: the positions A� B�C , representing each
image node in the topological map (see Figure 3), � A, � B and
�C are a set of 3D robot postures.

P�k � Ak Pk�1 AT
k  � 2

� Bk BT
k  Q

where � 2
� is the input variance (� � � r � � l by assumption),

Ak and Bk are the model Jacobians and Pk�1 is the model co-
variance matrix at the previous step.

By inverting Equation (1), filter-predicted measurements
are obtained while the measurement corrections are the ac-
tual image feature positions, considering a zero mean gaussian
noise to represent the inaccuracy of image coordinates extrac-
tion.

4.1.2. Topological Data

Once three-dimensional feature position estimates have con-
verged to a value with a low level of uncertainty, the image IB ,
grabbed from the previously unknown position � B reached at
the end of the estimation process, is added as a new node B in
the hybrid map. The set FAB represents the feature set used by
the visual servoing controller to steer the vehicle from position
� A to position � B in the metric mapped space (see Figure 4) or,
equivalently, from node A to node B in the topological space
(see Figure 3).

It is worthwhile to note that the relation between image
nodes J and metric robot positions � J has the so-called down-
ward/upward solution property that guarantees consistency be-
tween the mapped spaces (Thrun and Biicken 1996). In partic-
ular, the property satisfaction ensures that the planned maneu-
vers, i.e. a path planning in the topological map or a visually
servoed path in the metric map, are consistent. The visual ser-
voing technique underpinning our method verifies this prop-
erty by construction.

The mapping process will be able to continue starting from
position � B (or again from � A), adding a new node in the hy-
brid map, say C , and an image IC , together with a new vehi-
cle position in the metric map �C and a new set of estimated
features FBC (or FAC ), and so on. Note that the global set of
features in view from node B is FB � FAB � FBC and that
FAB � FBC �� � implies FAC �� �, directly enforcing a con-
nection between the positions � A and �C . Furthermore, the set
FAB can be used to travel from � A to � B and vice versa by
inverting desired and initial image feature positions in the po-
sition based visual servoing controller. A graphical example of
a hybrid map produced by a vehicle that has traversed posi-
tions � A, � B and �C of an unknown environment is depicted in
Figures 3 and 4.

5. Navigation through Topological Waypoints

Let the robot be in a generic mapped position, say W � A �
W [� 1� � 2� � 3]T (or a node A with image IA). Suppose that the
robot has to reach a new position, say � K , expressed in the
metric map (whose fixed reference frame is �W �). If W � K cor-
responds to a topologically mapped location K , which has an
associated image IK , a standard graph visiting algorithm is
used for the path selection from A to K in the image map.
This therefore permits the vehicle to steer through the map
nodes using the servoing presented in Section 3. One possi-
bility in order to implement a minimum traveling path algo-
rithm through actual and desired nodes is using the A* algo-
rithm (Hart et al. 1968). This algorithm demands an admissi-
ble heuristic estimate of the distance, to be saved in the node
link weight SA�B . In our case, the distance between node A and
node B is the physical distance given by the relative node posi-
tions � A and � B . The vehicle thus travels from A to K through
a set of mapped images.

It is worthwhile to note that the goal of the visual servoing
is expressed with an image mapped in the topological map.
Indeed, the hybrid map representation ensures that each image
is labeled with the corresponding graph node and each graph
node is connected to the robot metric space. Moreover, it is
also important to note that paths taken during exploration are
likely to be a straight line in Cartesian space. However, the
visual servoed path is not necessarily so.

Remembering that a single connection between two nodes
is used to travel between the node images (desired image and
final image are interchangeable), graph navigation is deadlock
free in static environments.

It is worthwhile to note that, in the case of multiple agents
in the same unknown environment, each agent builds its hy-
brid map that can be successively fused with the other agents’
maps. Indeed, fusing two topological maps comes relatively
easy when it is possible to identify a visual servoing path
between nodes relative to two different maps, avoiding more
complex metric map merging techniques (Leonard et al. 2002�
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Fig. 5. Identifying nodes in the environment: (a) a kidnapped robot identifies two possible nodes in the known map that can be
reached� (b) from position one (outer green contours), it is possible to reach position two (inner blue contours), thus enforcing a
path closure or map merging.

Thrun et al. 2002). Since topological map merging relies on
SIFT features to detect similar images by determining the set
of common features between the image in view from the robot
and the mapped image, the same idea can be used to solve the
kidnapped robot problem (Figure 5).

Similarly, if the robot recognizes a previously mapped im-
age node during the map building process and, if the node is
reachable, a new edge is created and the closed path is gen-
erated. Again, consistency of the closed loop connections be-
tween the path planners and the hybrid map is ensured by the
visual servoing controller and the upward/downward solution
property.

6. Robot Localization and Map Update

During the navigation on the map, the robot perceives new in-
formation and can continuously update its estimate of its own
posture. An update of the metric map on which localization is
based is also possible. To do so, we again adopt an Extended
Kalman Filter. Selecting a set of n � 4 estimated feature points
(Murrieri et al. 2004), the EKF state will be

S � [Sr
1� Sr

2� Sr
3� S1� S2� S3� � � � � S2n�1� S2n]T

� [W � 1�
W � 2�

W � 3�
C p1

1�
C p1

3� � � � �
C pn

1 �
C pn

3 ]T �

where the first three elements represent the vehicle state space.
The feature heights come from previously estimated values.

Estimated state initial guess is computed using the least
mean squares static localization proposed in Murrieri et al.
(2004) for the vehicle and inverting Equation (1) for the fea-
ture. The initial model covariance matrix is again block diag-
onal and is initialized depending on vehicle localization errors

(�1 m for robot cartesian position and�1 radian for the orien-
tation in our experimental setting).

The state prediction model, incorporating the vehicle kine-
matic, is
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where U�k� � [u1�k�� u2�k�]T are, again, the encoder mea-
surements for forward and angular velocity. Noisy measure-
ments, modeling errors

� � ��r
1� �

r
2� �

r
3� �1� � � � � �2n�

T

and noisy odometry data are considered in a similar way as in
the map building filter.

It is worthwhile noting that during the servoed path it is
possible to enforce the feature estimation obtained in the map-
ping process and to add a more reachable set of 3D features
from unmapped entities.
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Fig. 6. Images grabbed by the robot camera in (a) the starting position and (b) final position of the estimation process. These
images will be added as image nodes to the hybrid map.

Fig. 7. Estimated (a) robot positions and (b) orientation during the mapping process are reported (back and forth, image based,
mapping phase). The estimation algorithm adopted is the extended Kalman filter.

7. Experimental Results

7.1. Hybrid Map Experiments

A low-cost apparatus was employed to highlight the poten-
tial of the proposed technique. The experimental setup com-
prises of a K-Team Koala vehicle (www.k-team.com/robots/
koala/index.html), equipped with a commercial webcam
placed on the front part of the robot platform. The vehicle
has two symmetric rows of three wheels on its sides, each
actuated by a single low-resolution stepper-motor actuator.
The construction implies that slipping and skidding of some
of the wheels occurs whenever the vehicle moves along a
curved trajectory. Such conditions make it hard to use odom-
etry for localization and control, and strongly motivate the

use of visual servoing. The controller is implemented under
Windows XP on a 1130 MHz Pentium III laptop mounted on-
board. SIFT elaboration is performed using ERSP vision li-
brary (Goncalves et al. 2005� Karlsson et al. 2005). The In-
tel OpenCV (www.intel.com/research/mrl/research/opencv/)
library was used to compute optical flow and to track features.
The hardware communication between the robot and the lap-
top is performed by a RS-232 serial cable.

7.1.1. Map Building

The image-based controller used for exploration avoids fea-
ture occlusions and obstacles and it is able to take into account
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Fig. 8. Encoder values for (a) the left and right wheel and (b) the resulting forward and angular paths, i.e. the time integrals of
the unicycle forward and angular velocities.

the limited field of view constraint. More precisely, the image-
based controller simply steers the vehicle back and forth to
estimate the feature 3D coordinates (using an EKF estimator
with erroneous feature height initial guesses) and to satisfy the
previously mentioned visual constraints. Then, at the end of
each feature visual estimation, it rotates and starts the mapping
phase again with two other images.

In the experiments both the mapping phase (topological
and metric) and the navigation phase (visual servoing) are re-
ported. In the mapping experiment, the robot collects a set of
images and, for each pair of images, say Ii and I j , it estimates
the 3D coordinates of the image feature points Fi j and the 3D
robot positions � i and � j . The images I4 (Figure 6a) and I5

(Figure 6b) are grabbed by the robot camera at the beginning
and at the end of the estimation process, respectively.

Figure 7 depicts the robot estimated position during the
mapping: �� 1� � 2� cartesian positions are reported on the left,
while the orientation � 3 is on the right.

The encoder values for left and right wheel and for forward
and steering path are also reported (see Figure 8). Note that
the robot has traveled an almost linear path, moving back and
forth, therefore left and right wheel encoders are almost iden-
tical and angular encoder value is always zero. Moreover, the
forward and angular encoder values are actual measures made
available to the EKF, computed from the left and right wheel
encoders. An image-based controller was employed, together
with an obstacle avoidance controller based on proximity sen-
sors (notice the correction in the trajectory at t � 35 s).

It should be noted that the particularly smooth path trav-
eled by the robot during the mapping process dramatically re-
duces odometry lack of accuracy, allowing a more accurate and
faster feature estimation. Finally, notice how the EKF estima-
tor strongly relies on the dead-reckoning data from the wheel
encoders.

Fig. 9. The topological image-based map.

The experimental mapping process runs for 50 s and the
sampling period (i.e. the inverse of the frequency of the EKF
steps) is T � 0�1 s. The sampling period T is determined by
the worst-case frame rate available for commercial webcams.
Although even low cost cameras ensure about 20–30 frames
per second, the rate changes depending on ambient illumina-
tion variations.

Features are represented using a patch from the captured
image. It is worthwhile to note that all the processing is carried
out online. Figure 9 reports an image graph created during a
mapping traveling.
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Fig. 10. Map navigation: (a) desired image and (b) initial image.

Fig. 11. (a–c) Desired images from each topological map node and (d–e) images grabbed from the camera after each visually
servoed path.

7.1.2. Localization and Navigation

The visual servoing controller has been used to travel the
distance between the mapped images, parking the vehicle in
the position x3

T (position I3 in the topological map, see Fig-
ure 10a). The initial robot position is unknown, but the ar-
chitecture solves the kidnapped robot problem identifying the
topological position x5

T (see Figure 10b). Hence, the visual ser-
voing path corresponds to a travel between image node I5 to
I2.

In Figure 11, the nodes crossed by the robot during the
parking are represented. In Figures 11a–c, the images stored
in the topological map (i.e. desired images for the visual ser-
voing) are represented. In Figures 11d–e, the images grabbed
from the camera after each path are depicted. Once it is possi-
ble to localize and track features of the next node to be reached,
an intermediate node is no longer approached.

A wide movement in the mapped environment comprises
several limited movements between each pair of images (Fig-
ure 11). Nevertheless, the visual servoed motion between suc-
cessive images is still quite small. Indeed, it is well known
in the literature (Chaumette and Hutchinson 2006, 2007) that
large image errors (hence, large robot movements) decrease
accuracy and robustness of the visual servo controller. In the
proposed architecture, the granularity of the topological map
is related to the visual servoing accuracy.

Figure 12 reports image feature coordinates during the
parking maneuver between two images of the topological im-
age map, while Figure 13 reports the angle of attention of each
feature (Murrieri et al. 2004).

Notice that the rather large oscillations that can be observed
in Figures 12 and 13 describe motions in the image plane of
the observed features corresponding to the small maneuvers
of the non-holonomic vehicle that are necessary to cope with
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Fig. 12. Feature image plane coordinates, reported in pixels.

Fig. 13. � angles, reported in radians.
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Fig. 14. Visual servoing error compensation.

the camera-limited FOV when near the final position (Mur-
rieri et al. 2004). As described above, the control switching
policy stops the robot when the desired distance threshold 	D

is reached, as shown in Figures 12 and 13.
Finally, Figure 14 reports the parking errors for Cartesian

coordinates �� 1� � 2� and orientation � 3 during a parking task
accomplishment. The total length of the parking maneuver is
about 22 s with sampling time in the parking task T � 0�1 s.
It should be noted that, in Figure 14a, the rather ample feature
motions observed before in the image plane (Figure 12) corre-
spond to quite moderate actual motions of the vehicle center,
and are caused by the orientation changes in the parking ma-
neuver (Figure 14b).

8. Conclusions

In this paper, we have proposed a visual servoing scheme for
a non-holonomic vehicle in unknown indoor environments.
The proposed approach gives a solution to the problem of au-
tonomously building a map for servoing purposes. The solu-
tion is based on previously developed control schemes and a
map capable of overcoming the limits of these schemes in a
large environment. The work could be regarded as an attempt
to connect control techniques (action) and sensorial data inter-
pretation (perception). The method has the advantage that the
maps produced and stored are rather small in terms of mem-
ory occupancy, hence in communication bandwidth require-
ments. This permits map sharing among mobile agents, which
is the goal of future work. Many other interesting develop-
ments of the present work are possible, including the adoption
of a purely appearance-based navigation and mapping scheme
for accurate servoing.
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