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Abstract—In this work, we present a novel approach to
dynamically describe human upper limb trajectories, addressing
the question on whether and to which extent synergistic multi-
joint behavior is observed and preserved over time evolution
and across subjects. To this goal, we performed experiments to
collect human upper limb joint angle trajectories and organized
them in a dataset of daily living tasks. We then characterized
the upper limb poses at each time frame through a technique
that we named Repeated-Principal Component Analysis (R-PCA).
We found that, although there is no strong evidence on the
predominance of one Principal Component (PC) over the others,
the subspace identified by the first three PCs takes into account
most of motion variability. We evaluated the stability of these
results over time, showing that during the reaching phase there
is a strong consistency of these findings across participants. In
other words, our results suggest that there is a time-invariant
low dimensional approximation of upper limb kinematics, which
can be used to define a suitable reduced dimensionality control
space for upper limb robotic devices in motion phases.

I. INTRODUCTION

THE human nervous system can manage the extraordinary
kinematic complexity of the muscular-skeletal apparatus,

enabling the seamless and effective execution of different motor
actions. Understanding the processes underpinning this behavior
represents a very active and fascinating topic in neuroscience,
where a lot of attention has been devoted to the investigation of
the concept of synergies, with a special focus on the hand (see
next section for a discussion on the related work). Synergies
can be regarded as principal control patterns that the brain
rely on to cope with the abundancy of the degrees of freedom
(DoFs), for motion generation [1]. The study of this generalized
simplification approach has shed light on the neural mechanisms
of kinesiology and also opened promising perspectives e.g. in
assistive/rehabilitation robotics and prosthetics [2]–[6], for the
design and control of human-inspired artificial devices with a
reduced number of inputs [7].

Looking at the human upper limb, the investigation of
the underpinning synergy-based control and its characteristics
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over time has received little attention so far, compared with
analogous studies on human hand postural synergies. The latter
usually employ dimensionality reduction to identify principal
joint covariation patterns, e.g. through Principal Component
Analysis (PCA) (see next section). However, PCA cannot
be applied for characterizing time-varying phenomena, since
the assumption of Independent and Identically Distributed
(i.i.d.) samples would be violated [8]. State-of-the art methods
to enable the use of PCA with temporal kinematic data
usually rely on the augmentation of the dimensionality of the
dataset, expanding the number of samples along the temporal
coordinate [9,10]. However, in this way, the computed principal
components take into account trajectory variability, rather than
inter-joint coupling. Furthermore, when the temporal steps
considered in the analysis become numerous, the dimensionality
of the problem also increases, and the number of experiments
required to guarantee that the PCA is well posed makes
this implementation practically unfeasible or, at least, highly
challenging.

To overcome these limitations and bridge the gap between
hand and upper limb synergy investigation, in this work, we
propose a new approach, named Repeated PCA (R-PCA),
which applies PCA on upper limb joint angles, at each time
frame of the motion trajectories. More specifically, after a pre-
processing phase based on Dynamic Time Warping, principal
components are calculated for each temporal frame of motion
execution. In this manner, we do not violate the underpinning
applicability hypotheses of PCA, since the samples from
different temporal steps can be regarded as i.i.d. To this goal,
we built a dataset of motor tasks, by asking 33 right-handed
able bodied participants (17 Female, age 26.56 ± 2.77) to
perform 30 daily living actions with their arm, belonging to
three different classes [11]. We evaluated the in-time stability of
these components by quantifying the angular deviation between
the subspaces identified by a reduced number of PCs at each
frame. Surprisingly, despite the non-negligible variability of the
single component in time, the norm of the 3D angles between
the subspaces identified by the first three PCs remains lower
than 20 degrees for all the motion phases, increasing only
during the contact-manipulation one. These findings suggest
that human upper limb movements can be generated through a
time-invariant model with a good approximation during motion
phases. Such an approximation degrades when the hand is
in contact with the environment or is adapting to perform a
specific task. To verify these results, we report a two-stage
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validation: (i) a cross-validation, where we repeated 10-times
our analysis on a random subset of 20 subjects; (ii) validation
on a synthetic dataset that we obtained by fitting a time invariant
statistical model on real data. Results show that our description
appears robust across subjects and coherent with the analytic
outcomes obtained with the synthetic data. The latter point
allows to exclude possible effects due to the pre-processing
algorithms in use. Moreover, the results on the synthetic dataset
further characterize the proposed measure as a quantification
of the time-invariance properties of the analyzed phenomenon
during the motion phases.

II. RELATED WORK

The investigation of the synergistic organization in the motor
domain has been tackled from different points of view and
at various levels (including muscular and kinematic), with
a special focus on the hand [7]. The main outcomes of all
these studies is that the number of DoFs directly controlled
by the human nervous system is lower than the one resulting
from a pure mechanical count [12]. Latash and colleagues [13]
defined synergies as a neural organization resulting in task
specific covariation of elemental variables, with the ultimate
goal of generating stable and effective movements. This theory,
also known as Uncontrolled Manifold [13,14], suggests that
unit elements are not individually controlled but rather are
free to vary. This fact is hence exploited by the nervous
system to minimize the error in endpoint control and maximize
motion performances. The three main mechanisms identified
in [13] for implementing the synergistic control are: i) the
elimination of specific kinematic DoFs (e.g. using muscles
spanning several kinematic joints [15]); ii) the optimization of
specific cost functions (e.g. end effector jerk) to get coordinated
movements [16,17]; iii) the functional linkage between unit
elements ([18]–[23]. The implication of the latter point at the
level of muscle activation led to the introduction of the concept
of m-modes, i.e. groups of muscles controlled together [24],
which act as single functional units. At the muscular level,
the concept of synergy-based dimensionality reduction has
received considerable attention and produced numerous relevant
results, leading to the identification of muscle synergies as the
building blocks for natural motion generation [20]. The general
approach is to record ElectroMyoGraphic (EMG) signals
from a large set of muscles during the execution of specific
tasks. Matrix factorization techniques are then used to identify
patterns of muscles co-activations, associated to independent
synergies, which are then related to relevant action variables
[25]. In [20], the authors affirmed that these components are
actively enrolled, following task-specific strategies, although
some muscle activation patterns are preserved across tasks.
Notwithstanding the very reduced number of synergies observed
in these tasks, a high variability of the muscle activity profile
can be generated by combining muscle synergies, modulating
their amplitude and temporal structure [26]. The existence of
muscle synergies in humans was confirmed by several other
studies, e.g. during static hand postures [27,28], for active
force generation with one or more fingers [29]–[31], and at
the upper limb level during fast reaching movements [32].

Similar outcomes were observed at the lower limb level, e.g.
in [33] the authors demonstrated that the EMG signals from 32
muscles in humans during walking are organized in patterns of
temporal activation of five independent components. Alterations
in this synergistic description were observed in case of motion
impairment, e.g. as a consequence of stroke events. In [34],
analyzing chronic stroke survivors performing a task of 3-D
force matching, the authors observed the recruitment of altered
shoulder muscle synergies, which was strongly associated to
abnormal task performance. In [35] the authors proposed a
index of impairment level based on the difference, between the
affected and non-affected upper limb, in terms of movement
complexity, calculated as the cumulative of variance explained
by functional synergies. In [36] the authors reported on training-
related changes in synergies while using a robotic therapy
device to train and analyze impaired arm movements. For an
overview on these topics the interested reader may refer to
[37].

At the kinematic level, the synergistic description was mainly
studied looking at the hand. Besides the well known papers
of Santello and colleagues on hand postural synergies during
grasp of imagined and real objects [18,19], several other studies
on this topic can be found in literature (see e.g. to [9,38]–
[41]). In these papers, dimensionality reduction techniques,
namely PCA, Non Negative Matrix Factorization, etc., were
applied to datasets of hand poses (joint values) recorded during
specific tasks. Results show that a reduced number of main
correlation patterns between hand joints, e.g. described in
terms of PCs, explains most of pose variability (these results
were then used to develop under-actuated robotic hands that
implemented these principal co-variation schemes, e.g. directly
embedded in the mechanical design see e.g. [42]). However, to
the best of authors’ knowledge, the rest of upper limb has not
received the same level of attention, despite the importance
that it plays to effectively orientate the hand for a successful
task accomplishment. The attention was mainly devoted to
the comparative analysis of pathological and physiological
conditions, as in [43], where upper limb movements were
studied during selected tasks to compare stroke patients and
able-bodied participants. PCA was used on one healthy subject
and one stroke patient performing different movements: cross
grasping, power grasping and pointing gestures. Authors
reported on some similarities and differences between stroke
and non-stroke synergies. Similarly, in [44] it was observed
that persons with hemiparesis exploit the redundancy of their
motor control to stabilize performance variables, in a way
similar to healthy subjects - although with different patterns
of joint couplings. In [45], a quantitative method to assess
upper limb motor deficits in children with cerebral palsy using
three-dimensional motion analysis during the reach and grasp
cycle was developed. Other papers studied muscular synergistic
activation in upper limb, as in [46], where electromyographic
activity was recorded from shoulder and arm muscles during
point-to-point movements. However, the relation between the
synergistic description at muscle level and its impact on the
kinematics is still under investigation [47].
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Fig. 1. In figure A we show marker location on upper limb and chest, in figure
B and C we report a scheme of the experimental setup. Two RGB cameras
are included to record the scene. Finally, in figure D, we show the system
parametrization. The labels q1, . . . , q7 refer to the joint angles of the model.
The global reference frame is fixed to the chest (epigastrium) and defined by
the axes x, y and z.

III. EXPERIMENTAL SETUP

A. Setup and Experiments

A comprehensive study of human upper limb control requires
a large dataset of movements, i.e. a set of actions that span the
whole upper limb workspace performed by different subjects
[18,39,48]. In this work, we asked 33 subjects (17 Female,
age 26.56 ± 2.77, all right-handed) to perform a set of 30
different daily-living tasks and recorded the 3D position of 20
active optical markers fastened to the upper limb and the chest
using a Phase Space system (sampling frequency 100Hz) - see
Fig. 1. A redundant marker set was used to improve tracking
performance and avoid occlusion problems. In particular, we
placed 4 markers fixed to the chest, 6 markers fixed to the
lateral arm, 6 markers fixed to the dorsal forearm and 4 markers
fixed to the hand dorsum. Each marker set was placed on an
ABS-printed support, whose position was estimated during
the participant-specific calibration procedure, described in the
following.

The choice of the experimental tasks was inspired by state
of the art grasping taxonomies [49,50], and the analysis of
human upper limb movement workspace [51]–[53]. It is worth
mentioning that, although the hand kinematics is not considered
in the actual analysis, the final grasping pose determines the
control of the rest of the upper limb [39]. In addition to the
aforementioned purely kinematic considerations, we selected
the experimental tasks according to three main classes that are
known to produce different activation patterns at the brain
cortex level [54]. The twofold motivation for this choice
is related to both the need to differentiate arm movements
based on task purpose [18], and to comparatively analyze
the kinematic outputs with the brain activity, which we also
recorded using an electroencephalogram (EEG) system [11].
The long term objective is to devise design guidelines for the
development of robust brain machine interfaces - the latter

point is out of the scope of this work and hence it will not
be further considered. The three classes consist of 10 actions
each, and can be defined as: i) intransitive, i.e. actions that
do not need the usage of any object; ii) transitive, i.e. actions
that require the use of an object; iii) tool-mediated, i.e. actions
that use an object to interact with another one. Tasks were
meant to be executed in a random order, three times each, with
participants’ dominant hand. The subject seated on a chair,
with the hand in a defined starting position and the objects
placed on a frontal table at fixed distances (see Fig. 1). At
the end of each task, the subject returned to the starting point.
Subject were naive about the purpose of the study, and had no
history of neuromuscular or cognitive disorders that would have
affected the experimental outcomes. Each participant signed
an informed consent to participate in the experiment, while
the experimental protocol was approved by the Institutional
Review Board of the University of Pisa, in accordance with
the declaration of Helsinki. The complete list of movements is
reported in Appendix A.

B. Movement Identification

a) Modeling of upper limb kinematics: The description of
human kinematics is in general very complex. Several models
have been proposed in literature (the interested reader can
refer to [55,56], just to cite a few). In this work, we took
inspiration from [55], adopting a 7 DoFs and 3 rigid link time-
invariant model. We already used this description in [57], and
it was proven to represent a good trade-off between modeling
complexity and accuracy. Joint angles are named as q1, . . . , q7:
q1 is associated to the shoulder abduction-adduction; q2 is
associated to the shoulder flexion-extension; q3 is associated to
the shoulder external-internal rotation; q4 is associated to the
elbow flexion-extension; q5 is associated to the elbow pronation-
supination; q6 is associated to the wrist abduction-adduction;
q7 is associated to the wrist flexion-extension. In Fig. 1 D, we
report a schematics of the kinematic model.

The kinematics is hence completely defined through a set
of parameters, which are evaluated for each subject using a
calibration procedure. In the following subsections we briefly
summarize the techniques used for model calibration and joint
angle estimation. For further details on the kinematic model
adopted in this work and the procedures for motion estimation,
the interested reader is invited to refer to [57].

b) Model calibration and joint angle estimation: Con-
sidering the high variability of kinematic parameters among
subjects, we designed a first procedure to calibrate the model for
each specific participant, by calculating an optimal parameter
set. This is achieved by solving the following constrained
least-squares minimization problem:

(x∗, p∗G) = arg min
xk∈Dx,pG∈Dp

1

2

Np∑
k=1

rTk rk

where rk - the residual function that we aim at minimizing -
is calculated as the error between the measured marker position
yk and the marker position estimated through the forward
kinematics (FK) f(xk, pG); FK inputs are xk, which represents
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the vector of the estimated joint angles, and pG, i.e. the vector
of model kinematic parameters. We assumed the following
problem constraints: i) joint values are only within the upper
limb range of motion and ii) parameters can vary around a
preliminary estimation of parameters performed with manual
measurements (initial conditions). Calibration performances are
further improved by evaluating this procedure upon different
time frames. This was performed by concatenating the measures
of marker positions and estimations in the vectors yk and
f(xk, pG).

The calibrated model was then used as input for an
identification procedure used to estimate the joint angles over
time. This was achieved using an Extended Kalman Filter
(EKF) based algorithm.

In particular, let the movement be considered as an uncertain
noisy process where at time frame k the joint angle vector xk
is the state of the process, yk is the markers position vector,
wk and vk are process and observation zero mean gaussian
noises, with covariance Qk and Rk, respectively, and f(xk) is
the forward kinematics. Note that, once the calibration phase is
completed, the vector pG is a known parameter of the model,
hence the FK depends only on the values of joint angles xk.

The system can be described using the following equations:{
xk = xk−1 + wk

yk = f(xk) + vk
(1)

Given the state at time frame k − 1, the state at time k is
calculated through a 2-step procedure:
• prediction of the future state x̂k|k−1 = x̂k−1;
• update of the state estimated in the first step by calculating
x̂k|k = x̂k|k−1 +Kkr̃k.

The amount of correction of step 2 is calculated as the product
between the error vector r̃k = yk − f(x̂k|k−1) and the matrix
Kk, where Kk = Pk|k−1H

T
k S
−1
k is the Kalman Gain, Pk|k−1

is the covariance matrix estimation of the predicted state, Hk =
∂(f(x))
∂(x) is the Jacobian matrix and Sk = HkPk|k−1H

T
k +Rk

is the residual covariance.

IV. DATA ANALYSIS

To answer the question on whether and to which extent a low-
dimensional representation of upper limb trajectories and inter-
joint couplings exists, one way could be to use a dimensionality
reduction technique, such as Principal Component Analysis
(PCA). PCA has been extensively used in the state of the
art of motion analysis (see section Related Work) to identify
principal directions of data variance, which may be intended as
the principal DoF coupling scheme, which explain most of pose
variability (see e.g. [18,19,38]). As reported in the Introduction
and Related Work sections, several studies have focused on
hand investigation, while the rest of upper limb has often been
discarded. In addition, time-dependence of joint trajectories is
scarcely considered when using standard PCA [10]. Indeed,
the latter point must deal with the underlying observation that
kinematic description at time step i intrinsically depends on the
previous poses of the upper limb. As discussed in [8], classic
PCA assumes that the elements of the datasets are i.i.d. This
essentially excludes the usage of temporally-correlated samples.

To overcome this limitation, yet preserving the temporal
information, we introduce a new methodological application
of PCA that we have named Repeated-PCA (R-PCA). R-
PCA allows to compute time-varying PCs while a descriptive
approach - reported later - enables to evaluate the robustness of
PC-based kinematic description over time, through a frame-by-
frame result comparison. To correctly implement this approach,
it is mandatory to have kinematic recordings synchronized
in time. In other terms, taken one sample as reference, all
the acquisitions must be modified in such a way to match
the same start and stop frame. This is typically solved by
applying Dynamic Time Warping (DTW)[57] to the dataset
consisting of upper limb joint evolutions recorded during the
experimental tasks of the protocol. DTW is a technique that re-
shape temporal evolutions so as they are synchronized, i.e. they
have the same duration and timing. Before DTW, a moving
average filter (window width 10 samples) was applied to each
element of the dataset.

A. Dynamic Time Warping

Temporal synchronization between signals is typically used
to increase sample affinity by conforming starting-time and
velocity of action execution [58,59]. Under a mathematical
point of view, this can be regarded as the problem of finding the
optimal time-shift and time-stretch between signals, or, in other
terms, a dynamic warping in time to maximize inter-signal
correlation. In this work, we implemented DTW as in [57],
leveraging on the following assumptions: time-monotonicity, to
preserve the coherence in time of the sample; linear distortion
in time, i.e. including a scaling factor to the time domain and,
hence, to the action velocity.

Given two time series, v1 and v2, the affinity between the
two signals is maximized by solving the following optimization
problem:

(S, T ) = argmax
S>0,T

ρ(v1(t), v2(St− T )) (2)

where the operator ρ is the cross correlation between two
vectors. Given two generic vectors A,B ∈ RN , ρ is calculated
as:

ρ(A,B) =
1

N − 1

N∑
i=1

(Ai − µA

σA

)(Bi − µB

σB

)
(3)

where µA and σA are the mean and standard deviation of
A, and µB and σB are the mean and standard deviation of B,
respectively. Problem 2 optimizes two parameters: S, i.e. the
scaling factor applied to the velocity of signal v2; and T , i.e.
the time shifting applied to v2.

DTW was applied to the whole dataset of joint trajectories,
having as reference signal (with respect to which the optimiza-
tion is carried out) one random elements of the dataset. In
this way we can obtain the parameters S and T corresponding
to all the recorded samples. The set of parameters identified
with such procedure was then used to warp all the joint signals
coherently. After this step, all the elements have the same
number of elements (i.e. same time-frames) and are represented
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in a matrix ∈ RNtm, where Nt is the number of time frames
considered and m is the number of DoFs.

B. Repeated Principal Component Analysis

As previously stated, PCA represents one of the most
common approaches to identify principal patterns of variation
within a dataset. PCA computes the orthogonal transformation
that converts a set of correlated observations into a set of
linearly uncorrelated variables called Principal Components
(PCs). In other terms, let us consider X to be the matrix
∈ RNxm that collects N observations from a stochastic process
with m degrees of freedom. Principal Components (PCs) can
be calculated as the eigenvectors Si of the covariance matrix
of data Σ = XXT − µµT , where µ = mean(X). When
applied to the description of kinematic postures, these vectors
are typically named Postural Synergies [18]. The amount of
data variability that each PC can explain is calculated as the
normalized corresponding eigenvalue. In other terms, the first
synergy is the vector S1 that maximizes the function

∑
i f

2
i1

subject to ||S1|| = 1, where fi1 = ST
1 Si is the first principal

component score; the second eigenvector S2, then, maximizes∑
i f

2
i2 subject to ||S2|| = 1 and ST

2 S1 = 0, and so on. Note
that this problem is well posed only if N >> m.

It is worth noticing that all the elements of the dataset
are intended as single independent observations of the same
stochastic process. The ith row of matrix X is a vector of m
variables. This severely limits the application of PCA for the
investigation of human movements, given the intrinsic time-
correlation of the motion samples (see Introduction). For this
reason, a lot of studies on PCA for motion analysis focus on
single frames of the movement, typically the last one, i.e. the
final grasp pose (see eg. [18,19,39]), discarding the temporal
evolution of the signals.

In this work, we propose an innovative approach to include
the temporal information into PCA, while preserving the
dimensionality of the problem. This algorithm, which is
described in the following, is named Repeated Principal
Component Analysis (R-PCA).

Let us consider Xi to be the matrix ∈ RNxm that collects
the upper limb poses of all the N elements of the dataset
for the specific time frame i. In this case, Xi collects a set
of i.i.d. samples in Rm and, then, it can be characterized
using the classic PCA implementation previously described
in this section. The outcomes of this analysis describe the
principal joint couplings that emerge at the specific time-frame
i. Consequently, repeating this analysis while varying i between
1 and Nt allows to describe the temporal evolution of the
synergistic behavior.

It is, in general, plausible that the synergistic coupling
between joints is not constant in time. To evaluate the variation
of PCs during a task execution, it is possible to quantify the
difference between the subspaces spanned by time-varying PCs
and the subspaces spanned by a corresponding set of synergies
used as reference. Without any loss of generality, here we
used as reference synergies the PCs calculated considering
the average poses (over time) during motion, over the whole
dataset. Hereinafter, we will refer to these PCs as global static

synergies. Note that the mean pose is used only as a single-
frame representation of the movement. In particular, in case
of 2 one-dimensional manifolds, defined by the vectors v1 and
v2, the minimum angular distance between them is quantified
as θ1,2 = cos−1(vT1 v2). This is the typical case in which we
want to compare two single synergies (i.e. vectors). In case of
two or more dimensions, the distance between subspaces is
provided through a number of angles equal to the cardinality of
the vector set considered. In this work we rely on the definition
of principal angles between subspaces given in [60]. Given
the vector of the principal angles, the distance between two
subspaces is finally calculated as norm of this vector.

V. RESULTS

In Fig. 2 we report the variance explained in time by the first
three PCs. While for hand movements several studies identified
one principal component that explains a considerable part of
dataset variability, our results on upper limb seem suggesting
that there is no strong dominance of one inter-joint coupling
scheme among the others, but rather we can identify three main
PCs that, together, explain between 70% and 85% of the total
variance (73.13 ± 4.64%). The variance explained by each
PC is almost stable over time, respectively 36.07 ± 3.24%,
24.37 ± 1.79%, 16.68 ± 2.44%. These values indicate that
the Euclidean space defined by the first three components
represents a low dimensional control manifold which accounts
for most of the upper limb movement variability.

What is also noticeable - as expected - is that the variance
explained by the first three components is lower during the
interaction phase, i.e. when subjects are in contact with the
objects or are performing specific gestures. This observation
support the idea that the complexity of motion control increases
when subjects are interacting with the environment. Future
works will further investigate this part, including a multi-
sensory analysis of the hand control that will comparatively
evaluate hand kinematics and EEG activation.

Looking at individual PCs computed through R-PCA, we
observe that they are not stable in time, but rather present a
strong variation during motion execution (see Fig. 3) which
could be interpreted as a dynamic modulation along trajectories.

To systematically evaluate synergies variability in time, we
used the definition of distance between subspaces introduced
in IV-B. In particular, the stability of each single synergy
is quantified as the time-varying distance with respect to
the corresponding PC defined on the average dataset (global
static synergy). The denomination ”corresponding” is intended
hereinafter in terms of cardinality, i.e. the first time-varying
synergy is compared with the first global static synergy and so
on. This definition can be easily extended to multi-dimensional
manifolds: the distance between two k-dimensional subspaces
is calculated as the norm of k principal angles, as defined in
[60].

In Fig. 4 we report the angular distance between each
time-varying synergy (only the first three are reported here
for the sake of space), and the corresponding global static
synergy. As expected, synergies show a remarkable variation in
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Fig. 2. Percentage of variance explained by the first three Principal Components
in time. Red plot is associated to S1, green plot to S2 and blue plot to S3.
The sum is finally reported in black.

time - not directly correlated with the action phases. However,
interestingly, when we consider the subspace defined by the
first three PCs together, the norm of the 3D distance w.r.t.
the corresponding global static synergy remains below 20
degrees for the whole movement phases (see Fig.5), while
increases during the contact/manipulation/fine gesture control
phase. This aspect seems to be coherent with the observation
we have before reported regarding the variance that components
explain in time. In other terms, results show that, even though
single PCs present a high variability in time, the subspace of
the first three PCs remains rather invariant during the pure
motion phases. It is worth noticing that such effect is not
present when we compare sub-manifolds with higher or lower
dimensionality. We believe that, for two-dimensional manifolds
(i.e. S1 + S2), this is due to the fact that two PCS are not
sufficient to describe the dataset variability in a sufficiently
accurate manner and, then, the third one is needed to effectively
take into account upper limb variability and control. Regarding
higher-dimensional manifolds (number of components between
4 and 6), this observation remains an open point. One possible
explanation could be that, while the first three synergies are
used to shape the gross movement, higher order synergies
account for very reduced contribution mainly used to refine
the motion and, hence, can show different pattern during the
temporal evolution.
A. Robustness across Subjects and Validation

We investigated the robustness of our results across subjects
by repeating the aforementioned analyses 10 times, while
randomly selecting a subset of 20 subjects for further analyses.
Results show that the norm of three-dimensional distance
between subspaces presents a shape similar to the one reported
in Fig. 5 (related plots are omitted here for the sake of space),
and it is always below 25 deg during the motion phases.

Moreover, to verify that the time-varying angular deviation
between individual PCs (see Fig 4) is actually due to the

TABLE I
COEFFICIENTS OF THE FIRST THREE GLOBAL STATIC SYNERGIES.

S1 S2 S3

q1 -0.5280 0.4504 0.2619
q2 0.2898 −0.1376 0.0219
q3 -0.1011 0.1454 0.0705
q4 -0.2067 0.2296 −0.4727
q5 0.3999 −0.3577 −0.0880
q6 0.0967 −0.0520 0.8335
q7 0.6442 0.7574 −0.0063

non-stationarity of the upper-limb motor control, with no
biases from the proposed R-PCA methodology, we performed
the analyses on a synthetic dataset generated through an
autoregressive (AR) model identified on real data. In particular,
the following AR model:

y(t) = a1y(t− 1) + · · ·+ ana
y(t− na) + e(t), (4)

with e(t) i.i.d. Gaussian white noise with zero mean and
standard deviation equal to 1, was fitted on real data (selecting
one random trial from the whole dataset) at different model
order. We chose na = 4 in accordance with the Akaike
information criterion and the minimal root mean square error.
Parameters ai are then estimated through a least-square method.
Then, we generated 1000 repetitions of a 7x500 realization of
the AR process, and applied our R-PCA method. As the model
is time-invariant, it ensures the stationarity of the output. As
expected, results show negligible values of the norm of angular
deviation between the first three PC-based subspace over time
as compared to the global static one. Indeed, the norm of the
angular deviation resulted as low as 1.3684 ± 0.4760 (Max
= 2.338).

B. Principal Component description

Results presented so far demonstrates that a static three-
dimensional description of upper limb kinematics is sufficient
to explain a high percentage of dataset variance during different
motion phases. Moreover, it is possible to affirm that such
approximation can be considered effective during the free
movements of the upper limb. Considering the movement
phases in which the process can be intended as time-invariant,
we can define a set of three vectors that are contained in the
span of the first three global static synergies and use it to
describe the upper limb movements through a time-invariant
basis. In Fig.6 we report a visual reconstruction of an upper
limb moving around the mean pose along the first three global
static synergies. The three main movements are not in general
required to be physically meaningful. However, it is possible
to observe that the first global static synergy appears to be
an extension/flexion of the arm in the sagittal plane, while
the second is more involved in modulating the level of the
hand along the vertical axis. Numerical values of the first three
global static synergies are listed in table I .
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Fig. 3. Coefficients of the first three PCs in Time. From top-left to bottom-right we report the values for joints q1-q7 according to the labeling of Fig. 1 D.
For reader’s convenience, time cycle is segmented according to Fig. 2.

Fig. 4. Angular deviation between individual PCs computed through R-PCA and the corresponding global static PCs. From left to right, we report the values –
in degree – over the time for the first, the second and the third one, respectively. For reader’s convenience, time cycle is segmented according to Fig. 2.
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Fig. 5. Norm of 3D angular deviation between the subspace of the first three
PCs computed through R-PCA and the subspace of the first three global static
synergies. Yellow, red and blue lines show the three principal angles between
the two subspaces as defined in [60], while in black we report their norm.

VI. DISCUSSIONS

The results presented in this study suggest that a synergistic

coupling between upper limb joints can be observed during
daily living activities. These synergies define a three dimen-
sional sub-manifold that appears to be stable during the motion
phase. We do believe that these outcomes can shade light
on the neural mechanisms underpinning synergistic motion
generation over time and potentially impact the rehabilitation
field too. Indeed, neurological disorders, e.g. stroke and focal
dystonia, affect the ability to coordinate multi-joint movements
[61]. Having a robust and simplified description of upper-
limb kinematics in physiological conditions could serve as
a baseline to evaluate eventual discrepancies induced by the
pathology, which can affect the PC-based low-dimensional
representation of motions (different number and/or type of
PCs involved), its time-invariance, and the robustness across
subjects. For the latter point, it is indeed known that there
is a large phenomenological variety in subjects with motor
disorders (related to different levels of impairment) [61], which
can be compared with the physiological case to assess the
effects of rehabilitative procedures.

However, the implications of this work are not limited to
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Fig. 6. Different upper limb shapes along the first three synergies. For each
row, the central figure shows the mean pose, while the others report the effect
of the corresponding synergy modulated by a coefficient σ varying between
-2 and 2.

the neuroscientific field only, but rather we envision potential
applications in robotics as well. The concept of synergies
and its intrinsic connection with dimensionality reduction has
found fertile application fields in engineering, with special
focus on artificial hands and grasping, see the Introduction
and e.g. [?,7] for a review on these topics. The time-invariant
model described in this work can be used to couple (and under-
actuate) the DoFs of an artificial upper limb, using mechanical
implementation or though software control. This can enable
the execution of a large variety of actions while maintaining
the actuation complexity low. The same concept, translated in
the mechanical domain, could be combined with soft robotics
technologies, as it was done e.g. in [42], to instruct the design
of simplified robotic manipulators, or prostheses, able to safely
and effectively interact with the external environment. At the
same time, the PC-based description can be used for simplifying
the control of fully-actuated anthropomorphic robotic arms, e.g.
for a safe human-robot communication and interaction [62].

VII. CONCLUSIONS

In this paper, we analyzed human upper limb movements
during activities of daily living and described the underlying
synergistic behavior. Time-varying synergies have been ex-
tracted using a frame-by-frame PCA approach. Results suggest
that large part of upper limb kinematic trajectory variability can
be approximated, with a good level of accuracy, using a time-
invariant low-dimensional model identified by the first principal
components of angular joints. Such description has been proven
to be preserved for a large part of the motion execution.
Variations of this time-unvarying synergistic description appear
in specific portions of the task. We believe that this effect may
be related to a fine - likely feedback - control of the limb
in the proximity of goal reaching. Further works will follow
two main directions: i) include additional tasks or different
task set to further strengthen the here reported outcomes, ii)
analyze the linkage between these results and the muscular
counterpart. Indeed, the relation between kinematic and muscle

synergies is still an open point in literature. Recently, some
studies attempted to correlate the two domains. In particular, in
[47] the authors argued that the relation between muscle and
joint-torque patterns is not fixed in general because of the non-
linear relation between the two domains, also considering the
intrinsic redundancy of the muscular-skeletal system. Similar
findings were discussed in [63] considering hand motion and
EMG measurements during reach, grasp and pull tasks. The
authors observed that muscle synergies are correlated although
shifted in phase whit respect to the kinematic counterpart. The
authors also hypothesized that kinematic synergies may have in
part origin from a synergistic muscle activation. It is possible
to speculate that the description essentially time-invariant of
upper limb synergies we reported in this work may be related
to principal muscle patterns, while changes observed during
the interaction phase may be also introduced by the enrollment
of different, time-dependent, muscle synergies in response to
environment adaptation.

APPENDIX A
LIST OF MOVEMENTS

Table II lists the 30 tasks included in the proposed protocol.
The first column counts the task number, the second links
to the corresponding grasp type (here we refer to [49]), the
third specify the class of movement (see section III-A) and the
fourth column reports a brief description of the task.
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