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Learning From Humans How to Grasp:
A Data-Driven Architecture for Autonomous
Grasping With Anthropomorphic Soft Hands

Cosimo Della Santina , Visar Arapi, Giuseppe Averta , Francesca Damiani , Gaia Fiore, Alessandro Settimi ,
Manuel G. Catalano , Davide Bacciu , Antonio Bicchi , and Matteo Bianchi

Abstract—Soft hands are robotic systems that embed compli-
ant elements in their mechanical design. This enables an effective
adaptation with the items and the environment, and ultimately,
an increase in their grasping performance. These hands come
with clear advantages in terms of ease-to-use and robustness if
compared with classic rigid hands, when operated by a human.
However, their potential for autonomous grasping is still largely
unexplored, due to the lack of suitable control strategies. To ad-
dress this issue, in this letter, we propose an approach to enable
soft hands to autonomously grasp objects, starting from the obser-
vations of human strategies. A classifier realized through a deep
neural network takes as input the visual information on the object
to be grasped, and predicts which action a human would perform to
achieve the goal. This information is hence used to select one among
a set of human-inspired primitives, which define the evolution of
the soft hand posture as a combination of anticipatory action and
touch-based reactive grasp. The architecture is completed by the
hardware component, which consists of an RGB camera to look
at the scene, a 7-DoF manipulator, and a soft hand. The latter is
equipped with inertial measurement units at the fingernails for de-
tecting contact with the object. We extensively tested the proposed
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architecture with 20 objects, achieving a success rate of 81.1% over
111 grasps.
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Robotics and Automation, Modeling, Control, and Learning for
Soft Robots, Grasping.

I. INTRODUCTION

THE execution of reliable and stable grasping with artificial
hands is a main challenge in the robotics field, due to its

practical relevance and theoretical complexity. The classic ap-
proach used to grasp with rigid robotic hands generally favored
object-centric analytical solutions. More specifically, a set of
available contact points is hypothesized, while their position
and contact forces are evaluated from the object knowledge [1].
Although very elegant and theoretically sound, this approach has
not yet produced the desired outcomes in practice. To address
these limitations, in soft artificial hands part of the control intel-
ligence has been directly embedded in their mechanism, through
the purposeful introduction of elastic elements and under-
actuation patterns [2], [3]. Thanks to their intrinsic compliance,
soft hands can mold around the external items and exploit their
environment, thus multiplying their grasping capabilities.

Several papers have shown that soft end-effectors can achieve
high-level grasping performance when operated by humans (see
e.g. [4], [5]). However, such level of dexterity is still unmatched
in autonomous grasp execution. Indeed, classic approaches can-
not be applied to this kind of hands, which - by their own nature -
do not allow fingertips placement with the required precision and
relative independence. On the contrary, data driven approaches
could be the key to learn from humans how to manage soft hands,
towards higher levels of autonomous grasping capabilities.

Recently machine learning has become very popular for
grasping generation, with positive results [6]–[8]. However, so
far only few works in literature have applied learning methods
in the control of soft hands. In [9] learning by demonstration is
combined with reinforcement learning to transfer grasping ca-
pabilities of known objects from a human operator to the robotic
system. In [10] autoencoders and generalized regression neural
networks are used to learn from examples generated by a hu-
man operator, how to manipulate previously unseen thin objects
with a soft gripper. While very promising, both works show
no generalization capabilities in terms of objects to be grasped.
Two works recently attempted to go beyond this limitation. In
[11] a library of reactive strategies was collected from a subject
operating a soft hand, and successfully translated for robotic
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Fig. 1. High level organization of the proposed architecture, which combines
anticipatory actions and reactive behavior. A deep classifier looks at the scene
and predicts the strategy that a human operator would use to grasp the object.
This output is employed to select the corresponding robotic primitive. These
primitives define the posture of the hand over time, to produce a natural, human-
like motion. The IMUs placed on the fingers of the hand detect the contact with
the items and triggers a suitable reactive grasp behavior.

grasping of new items, in a human-robot handover scenario. In
[12] a 3D convolutional neural network is trained with tens of
thousands of labeled images. The network output provides the
control input for the hand approaching direction.

These works represent an important step forward, not only in
terms of performance, but more fundamentally for recognizing
the complementary yet intertwined nature of machine learning
methods and soft hands. Indeed, learning based techniques can
only achieve solutions that are close enough to the desired ones,
rather than exact. This uncertainty can be naturally compen-
sated by the ability of soft hands to locally adapt to unknown
environments.

The aim of this letter is to build upon this principle, and
fully exploit hardware adaptability to grasp a vast range of very
different objects. To this end we propose a human inspired multi-
modal, multi-layer architecture (Fig. 1) that combines feedfor-
ward components with reactive sensor-triggered actions. We
extensively tested the proposed architecture on a set of 20 ob-
jects previously unseen by the network. The orientation of the
objects placed on a table also varied. We performed three rep-
etitions for each condition, for a total of 111 tests, reaching an
overall percentage of grasp success of 81.1%.

II. PROPOSED APPROACH

Humans are able to accomplish very complex grasps by em-
ploying a vast range of different strategies [13]. This comes
with the challenging problem of finding the right strategy to use
for a given scenario. It is commonly suggested that the animal
brain addresses this challenge by first constructing representa-
tions of the world, which are used to make a decision, and then
by computing and executing an action plan [14].

Rather than learning a monolithic end-to-end map, we built
the proposed architecture as combination of interpretable basic
elements organized as in Fig. 1. The intelligence is here dis-
tributed on three levels of abstractions; i) high level: a classifier

which plans the correct action among all the available ones, ii)
medium level: a set of human-inspired low level strategies im-
plementing both the approaching phase and the sensor-triggered
reaction, iii) low level: a soft hand whose embodied intelligence
mechanically manages local uncertainties. All the three levels
are human-inspired.

We realized the classifier through a deep neural network. This
was trained to predict the object-directed grasp action chosen
among nine human-labeled strategies, using as input only a
first-person RBG image of the scene. These actions were imple-
mented on the robotic side to reproduce the motions observed
in the videos. A reactive component was then introduced, fol-
lowing the philosophy of [11]. This component take as input the
accelerations coming from six IMUs placed on the soft hand
to generate the desired evolution of the hand pose. The lower
level of intelligence consists of the soft hand itself, which can
take care of local uncertainties relying on its intrinsic compli-
ance. Any robotic hand being soft and anthropomorphic both in
its motions and in its kinematics can serve to the scope. With-
out loss of generality, we use here the Pisa/IIT SoftHand [15].
We report in the next sections the detailed description of these
components.

To conclude, the main contributions of this letter are:
� A deep neural network, which is able to predict with high

accuracy the strategy that a human would adopt to grasp an
object, using a first-person RGB image of the scene. This
result is then used to plan a suitable primitive execution on
the robotic side;

� A set of reactive primitives that reproduce human grasps,
substantially extending [11];

� The definition and extensive experimental validation of an
autonomous grasping system, which combines these two
blocks with the adaptability of a soft hand.

III. DEEP CLASSIFIER

The aim of this deep neural network is to associate to an
object detected from the scene the correct primitive (i.e. hand
pose evolution) humans would perform to grasp it. The deep
learning model consists of two stages, depicted in Fig. 1: one
for detecting the object, and the second one to perform the actual
association with the required motion. Before going through the
details of these two components, we briefly describe the phases
of primitive extraction and labeling from human videos.

A. Dataset Creation and Human Primitive Labeling

We collected 6336 first person RGB videos (single-object,
table-top scenario), from 11 right-handed subjects grasping the
36 objects in Fig. 2. The list of objects was chosen to span a wide
range of possible grasps, taking inspiration from [16]. During
the experiments, subjects were comfortably seated in front of a
table, where the object was placed. They were asked to grasp
the object starting from a rest position (hand on the table, palm
down). Each task was repeated 4 times from 4 points of view
(the four central points of the table edges). To extract and label
the strategies, we first visually inspected the video and identified
ten main primitives

� Top: the object is approached from the top with the palm
down parallel to the table. Object center is approxima-
tively at the level of the middle phalanx. When contact is
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Fig. 2. The set of 36 objects used during human videos acquisition. Photos are not in scale. From left to right and from top to bottom we have: a pair of glasses,
a tape, a coffee mug, a salt shaker, a match, a piece of chess, a marker, a rubber, a colander, a button, a bottle, a match box, a fork, a credit card, a box, a knife,
a spatula, a glass, a CD, a shashlik, a book, a shell, a screwdriver, a comb, a plate, a screw, a coin, a key, a spoon, a game card, a ball, a sponge, a nail polish
container, a walnut, a straw and a cigarette.

Fig. 3. Experimental setup. The Pisa/IIT SoftHand is mounted as end effector
of a Kuka LWR. A web-cam records the scene from a first-person point of view.
The hand is equipped with inertial measurement units used to detect contacts.
Reference frames are reported.

established, subjects close simultaneously all their fingers,
achieving a firm power-like grasp.

� Top left: same for the top grasp, but with the palm rotated
clockwise of at least π/9 radians.

� Top right: as for the top grasp, but with the palm rotated
counter-clockwise of at least π/9 radians.

� Bottom: the object is approached from its right side. The
palm is roughly perpendicular to the table, but slightly
tilted so that the fingertips are more close to the object than
the wrist. When the contact is reached, the hand closes with
the thumb opposing the four long fingers. This primitive
is used to grasp large and concave objects, e.g. a salad
bowl.

� Pinch: same as for the top, but the primitive concludes with
a pinch grasp.

� Pinch left: same as for the top left, but the primitive con-
cludes with a pinch grasp.

� Pinch right: same as for the top right, but the primitive
concludes with a pinch grasp.

� Slide: the hand is placed on the object from above as to
push it toward the surface. Maintaining this hand posture,
the object is moved towards the edge of the table until it
partially protrudes. A grasp is then achieved by moving the
thumb below the object, and opposing it to the long fingers.
This strategy is used to grasp objects whose thickness is
smaller compared to the other dimensions, such as a book
or a compact disk.

� Flip: the thumb is used together with the environment on
one side, and the index and/or the middle on the opposite
one, to pivot the object. The item rotates of about π/2 and

Fig. 4. Confusion matrix summarizing the performance of the proposed deep
classifier on the test set. Each entry shows the rate at which the primitives
identified by the row labels are classified as the ones identified by the column
labels. Rate is also color coded, from low rate coded with white to high rate
coded with dark green.

then it is grasped with a pinch. This strategy is used to
grasp small and thin objects, as a coin.

� Lateral: the same as for the top grasp, but the palm is
perpendicular to the object during the approaching phase.
This strategy is used to grasp tall objects, like a bottle.

The choice of these primitives was done taking inspiration
from literature [13], [16], and to provide a representative yet
concise description of human behavior, without any claim of
exhaustiveness. Note that the selection of the action primitive
is not only object-dependent but also configuration dependent.
This is clear for the left/right modifier. Consider for example a
bottle; if placed on its base it triggers a lateral grasp, while when
laying down on its side induces a top grasp.

The first frame of each video showing only the object in the
environment was extracted, and elaborated through the object
detection part of the network (see next subsection). The cropped
image was then labeled with the strategy used by the subject in
the remaining part of the video. This is the dataset that we used
to train the network.

B. Object Detection

Object detection is implemented using the state of the art
detector YOLOv2 [17]. Given the RGB input image, YOLOv2
produces as output a set of labeled bounding boxes containing
all the objects in the scene. We first discard all the boxes labeled
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Fig. 5. Four significant relative object-hand postures assumed by the hand
during the approaching phase. Starting from these initial configurations, the
hand translates until a contact is detected by the IMUs. Directions of translation
are perpendicular to the table for top and pinch primitives, and parallel to it for
lateral and bottom.

as person. We assume that the target is localized close to the
center of the image. Hence, we select the bounding box closest
to the scene center. Once the object of interest is identified, the
image is automatically cropped around the bounding box, and
resized to 416 × 416 pixels (size expected by the subsequent
layer). The result is fed into the following block to be classified.

C. Primitive Classification

1) Architecture: Instead of building from scratch a com-
pletely new architecture, we follow a transfer learning approach.
The idea is to exploit the existing knowledge learned from one
environment to solve a new problem, which is different yet re-
lated. In this way, a smaller amount of data is sufficient to train
the model, and achieve high accuracy with a short training time.
We select as starting point Inception-v3 [18], trained on the Im-
ageNet data set to classify objects from images. We keep the
early and middle layers and remove the softmax layer. In this
way, we have direct access to the highly refined and informa-
tive set of neural features that Inception-v3 uses to perform its
classification. It is important to note that the object signature
is not one-to-one but it aims at extracting high level semantic
descriptions that can be applied to objects with similar charac-
teristics. On the top of the original architecture we add two fully
connected layers containing 2048 neurons each (with ReLU ac-
tivation function). These layers operate an adaptive non-linear
combination of the high-level features discovered by the con-
volutional and pooling layers, further refining the information.
In this way, the geometric features are implicitly linked each
other to serve as the base for the classification. The output of
the last fully-connected layer is thus fed into the softmax, which
produces a probability distribution over the considered set of
motion primitives. We chose the one with maximum probability
as output of the network.

2) Training and Validation: We use the labeled dataset de-
scribed above to train the network. The parameters of the two
fully connected layers at the top of the Inception-v3 architec-
ture are trained from scratch, while the original parameters of

TABLE I
INITIAL ORIENTATION Q0 AND NORMALIZED DIRECTION

OF APPROACH d̂ FOR EACH PRIMITIVE

Fig. 6. Set of objects used in the experimental validation. None of them was
part of the set used during training. A 30cm ruler is present in all the photos to
help in qualitatively understanding object sizes.

the network are fine-tuned. To this end we impose layer-specific
learning rates. More specifically, we freeze the weights in the
first 172 layers (over the total 249) of the pre-trained network.
These layers capture indeed universal features like curves and
edges that are also relevant to our problem. We instead use
the subsequent 77 layers to capture dataset-specific features.
However, we expect the pre-trained weights to be already good
if compared to randomly initialized ones. Hence, we avoid to
abruptly change them using a relatively small learning rate λft .
Finally, given that the weights of the two last fully connected
layers are trained from scratch, we randomly initialize them and
use a higher learning rate λtr w.r.t. the one we use in previ-
ous layers. We further reduce the risk of over-fitting by using
dropout ; before presenting a training sample to the network, we
randomly disconnect neurons from its structure (actually, this
is implemented by masking their activation). Each neuron is
removed with probability pdrop . In this way, a new topology is
produced each time the network is trained, introducing variabil-
ity and reducing the production of pathological co-adaptation of
weights. We use Keras library for network design and training.
All the procedures were executed trough an NVIDIA Tesla M40
GPU with 12GB of on-board memory.

To verify the generalization and robustness of primitive clas-
sification, we use hold out validation. The goal is to estimate
the expected level of model predictive accuracy independently
from the data used to train the model. We split our data set in:
70% objects for training, 20% objects for validation and 10%
for testing. We maintained a balanced number of objects per
class among over the three data sets. We trained 30 different
network configurations using the cross entropy cost function to
adjust the weights by calculating the error between the output
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TABLE II
STRATEGY USED, SUCCESSES AND FAILURES FOR EACH GRASP

of the softmax layer and the label vector of the given sample
category. Each configuration was obtained by varying the most
relevant model learning hyper-parameters, i.e. learning rates
λft ∈ {10−3 , 10−4 , 10−5 , 10−6} and λtr ∈ {10−2 , 10−3 , 10−4},
dropout probability pdrop ∈ {0.4, 0.5, 0.6}, number of epochs
in {10, 20, 30, 40}, and the batch size in {10, 20, 30, 40}. The
training time for each network ranged from 1 to 5 hours. We se-
lected the configuration that provided the highest f1-score accu-
racy [19] on the validation data set—which is 97%. The selected
hyper-parameters are λft = 10−5 , λtr = 10−3 , pdrop = 0.5, 30
epochs, and batches size 20.

With such parameters, the network is able to classify the
primitives in the test set with an accuracy ranging from 86%
to 100%, depending on the primitive, and 95% on average.
Fig. 4 shows the normalized accuracy of the classifier for all
ten classes. Visually inspecting the results reveals two main
causes behind the occasional failures of the network. The first
one is a limitation in the problem formulation itself, which
makes intrinsically not possible to achieve 100% classification
accuracy. Indeed, it seldom occurs that the same object in the
same configuration is grasped in two different ways by two
subjects. This happens for example for the coin, which is often
grasped through a flip, while sometimes slide primitive is used
instead. The second cause is connected to the fact that using
only a single RGB image, the network sometimes misinterprets
the object size. This could, for example, lead to predict a top
grasp rather than a bottom grasp for a bowl, since this object
may be interpreted as a ball-like item. In future work we will
consider the use of a stereo camera to prevent this issue.

IV. ROBOTIC GRASPING PRIMITIVES

In [20], Johansson and Edin affirm that the Central Nervous
System “monitors specific, more-or-less expected, peripheral
sensory events and use these to directly apply control signals
that are appropriate for the current task and its phase”. These
signals are largely precomputed (i.e. anticipatory, or feedfor-
ward). Driven by this observation, we decided to implement the
robotic grasping strategies relying mostly on anticipatory ac-
tions. To do this, we took inspiration from the visual inspection
of the videos described in the previous section, and decided to
trigger primitive execution by specific events. The first event is
generated by the detection of an object and scene classification.
This triggers one primitive among all the available ones. We do
not consider here flip, which can not be implemented by the soft
hand that we use in this work. As a trade-off between perfor-

mance and complexity, we divide all primitives in two phases: i)
approach and ii) reactive grasp. The transition between the first
and the second phase is triggered by a contact event, detected
as an abrupt acceleration of the fingertips (as read by IMUs).

A. Experimental Setup

While the proposed techniques are not specifically tailored on
this specific setup, it is convenient to introduce it here to simplify
the description of the next subsections (see Sec. II). The robotic
architecture is composed of two main components: a KUKA
LWR-IV arm, and a Pisa/IIT SoftHand [15] as end effector.
This anthropomorphic soft hand has 19 degrees of freedom, and
only one degree of actuation. The intelligence embodied in the
hand mechanics is to be considered as an integral part of the
control architecture itself, rather than as a simple effector to act
onto the environment. A RGB camera is placed on the top of the
manipulator to simulate a first-person point-of-view. The robotic
hand is equipped with IMUs for contact detection, triggering
reactive strategies for grasping. The principal reference frames
used in our control framework are depicted in Fig. 3.

B. Approach Phase

During the approach phase, human hand tends to follow
straight lines connecting the starting position and the target
[21]. We reproduce this behavior through the simple trajectory

x(t) = x0 + d t , Q(t) = Q0 , (1)

where x ∈ R3 is the hand base frame position in Cartesian
coordinates, and Q ∈ R4 its orientation as quaternion, both ex-
pressed in global coordinates. x0 ∈ R3 and Q0 ∈ R4 are the
initial position and orientation, while d ∈ R3 is the direction of
approach. All these three quantities are defined by the selected
primitive, and dictated by the aim of heuristically reproducing
as close as possible the human behavior observed in the videos.
Fig. 5 shows photos of the hand in t = 0 for top, pinch, lateral
and bottom grasps. Tab. I summarizes directions of approach
and initial orientations for all the primitives.

C. Grasp Phase

The grasp phase is when the grasp actually happens, and
thus where the primitives differentiate more from each others.
When not differently specified, translations and rotations are
here expressed in hand coordinates.
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Fig. 7. Photosequences of grasps produced by the proposed architecture during validation: panels (a-h) present a top grasp of object 12, panels (i-p) a top-left
grasp of object 5, and panels (q-x) a top-right grasp of object 16. Panels (a-b) depicts the approach phase. In (c) the contact is detected and classified using (2). In
panels (c-f) the hand finely changes its relative position w.r.t. the object, as prescribed by the reactive routine, and grasps it. In (g) and (h) the item is firmly lifted.

Fig. 8. Photosequence of a grasp produced by the proposed architecture during validation: Bottom grasp of object 14. The hand starts from the initial configuration
of the primitive in panel (a). The contact happens in panel (b), triggering the reactive routine. In panel (f) the object is firmly lifted.

Fig. 9. Photosequences of grasps produced by the proposed architecture dur-
ing validation: panels (a-d) present a pinch grasp of object 7, panels (e-h) a
pinch-left grasp of object 8, and panels (i-l) a pinch-right grasp of object 9.
Panel (a) shows the hand initial configuration. The contact is established in
panel (b) through interaction with the environment, which also guides the hand
towards the grasping achieved in panel (c). In (d) the object is firmly lifted.

1) Top and Lateral Grasps: The reactive grasp framework
leverages on a dataset of 13 prototypical rearrangements of
the hand, extracted from human movements. In [11], a subject
was asked to reach and grasp a tennis ball while maneuvering a
Pisa/IIT SoftHand. The grasp was repeated 13 times, from differ-
ent approaching directions. The user was instructed to move the
hand until the contact with the object, and then to react by adapt-
ing the hand/wrist pose w.r.t. the object. Poses of the hand were
recorded through a PhaseSpace motion tracking system. We sub-
tract from the hand evolution recorded between the contact and
the grasp (T represents the time between them) the posture of the
hand during the contact. The resulting function Δi : [0, T ] →
R7 describes the rearrangement performed by the subject to
grasp the object. Acceleration signals α1 . . . α13 : [0, T ] → R5

were measured too through the IMUs. To transform these record-
ings into a grasping strategy, we considered the acceleration pat-
terns as a characteristic feature of the interaction with the object.
When the Pisa/IIT SoftHand touches the object, IMUs read an
acceleration profile a : [0, T ] → R5 . The triggered sub-strategy
is defined by the local rearrangement Δj , with

j = arg max
i

∫ T

0
aT(τ)αi(τ)dτ . (2)

When this motion is completely executed, the hand starts
closing until the object is grasped. This procedure proved its
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Fig. 10. Photosequence of a grasp produced by the proposed architecture during validation: slide grasp of object 3. Panels (a-c) depicts the approaching phase.
In panels (d-e) the environment is exploited to guide the object to the table edge. In panels (f-g) the hand changes its relative position w.r.t. the object so to favor
the grasp, which is established in panels (h-i). In panel (j) the item is firmly lifted.

Fig. 11. Photosequence of a grasp produced by the proposed architecture during validation: lateral grasp of object 4. Panels (a-c) present the approaching phase.

effectiveness in preliminary power grasp experiments on objects
approached similarly as specified here by the top primitive [11].
We extend here its use to top left, top right and lateral strategies.

2) Bottom: To mimic human behavior described in previous
section, when a contact is detected we rotate the hand along x
of π/3 and translate 300 mm along y. In this way the palm base
moves over, and the thumb can enter into the concave part of
the object during hand closure.

3) Pinches: In pinch, left pinch and right pinch strategies
the hand just closes without changing its pose.

4) Slide: To mimic the human behavior we realized an antic-
ipatory routine composed of the following sub-phases, triggered
by the initial contact with the object and the environment: i) ap-
ply a force on the object along x axis to maintain the contact
during sliding, by commanding a reference position to the hand
10 mm below the contact position; ii) slide the object towards
the edge of the table, iii) unload the contact to avoid push-
ing the object out of the table, by translating 10 mm along x,
iv) rearrange the hand to favor the grasp, by translating 100 mm
along x and 50 mm along z, and rotating along y of π/12 radians,
v) close the hand.

D. Control

A Jacobian based inverse kinematic algorithm is performed to
obtain desired joint positions qr from the prescribed end effector
evolution. A joint-level impedance control is used to realize
the motion, with K = 103 Nm

rad as stiffness and D = 0.7Nms
rad

as damping for each joint. The control law is τ(t) = Ke(t) +
Dė(t) + D(q, q̇) , where τ are the applied joint torques, e =
qr − q and ė = q̇ are the error at joint level and its derivate.
D is a compensation of the robot dynamics evaluated by the

KUKA embedded controller. All the control and sub-strategies
implementation were performed in ROS.

V. EXPERIMENTAL RESULTS

We test the effectiveness of the proposed architecture by
performing table-top object grasping experiments. A table is
placed in front of the system, as depicted in Fig. 3. The ob-
ject is placed by an operator approximatively in the center of
the table. RGB information from the web-cam triggers scene
classification through the proposed deep neural network, which
is followed by primitive execution. The task is repeated three
times. The exact position of the object and its orientation vary
each time, the first in a circle of radius ∼ 100 mm, the second
in the full angle range. All the process is repeated for each of
the 20 objects depicted in Fig. 6, chosen so as to elicit different
grasping strategies. Objects number 5, 6, 7, 8, 9, 10, 16, and 19
are classified with a different strategy depending on their posi-
tioning and orientation. We consider three tests for each possible
classification. The total amount of grasp tested is 111. None of
the selected objects was used during the network training phase.

Tab. II summarizes the results in terms of the primitive used,
successes, and failures for each object. The overall grasping
success rate is 81.1%. A grasp was considered successful if
the robot maintained it for 5 seconds (after which the hand
automatically opens). Note that objects 12 and 15 elicit only
the top grasp primitive, independently from their orientation.
They are indeed both (almost-)rotationally symmetric, so the
classifier does not take in account their orientation to select
the grasp. Looking instead at primitive-specific success rates
we obtain: Top 85.7% (Fig. 7(a-h)), Top left 73.3% (Fig. 7(i-
p)), Top right 100% (Fig. 7(q-x)), Bottom 100% (Fig. 8),
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Pinch 55.6% (Fig. 9(a-d)), Pinch left 55.6% (Fig. 9(e-h)), Pinch
right 66.7% (Fig. 9(i-e)), Slide 83.3% (Fig. 10), Lateral 86.7%
(Fig. 11).

VI. DISCUSSION

This work represents a substantial improvement w.r.t. [11],
where a similar success rate was obtained for human-robot
handover, while only exploratory tests were performed on
autonomous grasping. It is worth mentioning that this letter
represents—together with [12] - the first work that validates
over a large set of objects a combination of deep learning tech-
niques and soft hands. Any formal comparison between the two
works is prevented by the fact that neither this nor the other
paper used a standardized object set and protocol [22], [23].
With this as premise, it is worth noticing that our success rate
is only fairly lower than the one in [12] (which reports 87%
of successes, versus the 81% reported here). However, in our
work, we considered a higher number of objects for the testing
phase (20 versus 10), spanning a wider range of shapes, and
with larger differences w.r.t. the learning set. Another interest-
ing consideration arises from a more in-depth analysis of the
results. If we remove from the statistics the three objects that
would require a pinch grasps (i.e. 7, 8, 9) the success rate jumps
over 88%. This can be explained by an intrinsic feature of the
soft hand we used, which was designed to perform power grasp.
Nonetheless, using the environment as an enabling constraint,
the end-effector can still partially overcome this limitation. We
are sure - and we will test it in the future - that using other
versions of the SoftHand that can execute both pinch and power
grasping see e.g. [24], the success rate will increase.

VII. CONCLUSIONS

In this work, we proposed and validated a data-driven human-
inspired architecture for autonomous grasping with soft hands.
We achieve this goal by: i) introducing a novel deep neural net-
work that processes the visual scene and predicts which action
a human would perform to grasp the target object, ii) formulat-
ing and implementing an artificial counterpart of the strategies
that we observed in humans, iii) combining them together in
a integrated robotic platform, iv) extensively testing the pro-
posed architecture in the execution of 111 autonomous grasps,
achieving an overall success rate of 81.1%. Future work will
be devoted to testing the use of other anthropomorphic and soft
hands within this framework, as e.g. SoftHand 2 [24], RBO
hand [25].
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