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Exact task execution in highly under-actuated soft limbs:
an operational space based approach

Cosimo Della Santina, Lucia Pallottino, Daniela Rus, Antonio Bicchi

Abstract—Recently, the development of soft robots is impos-
ing a change of prospective in several aspects of design and
control, moving the robotic field closer to the natural world.
Soft robots, like many animals, are often built of continuously
deformable elements, and consequently are characterized by a
highly under-actuated input space. In this paper we prove that
given a generic nonlinear task to be accomplished by a soft
robot - as e.g. the positioning of its end effector in space - a
linear actuation space with the size of the task itself is already
sufficient to achieve the goal. We then introduce the dynamically
consistent projector into synergistic space, which can be used to
convert controllers designed in operational space, to work in the
under-actuated case. This enables a direct translation of control
strategies from classic to soft robotics. Leveraging on this result,
we present the first dynamic feedback controller for trunk-
like soft robots taking in account non constant deformations of
the soft body. We present simulations showing that using this
controller it is possible to track a prescribed dynamic evolution
of the robot’s tip with zero error at steady state, both in planar
and 3D case with gravity.

Index Terms—Modeling, Control, and Learning for Soft
Robots; Redundant Robots; Natural Machine Motion; Soft
Robot Applications; Motion Control.

I. INTRODUCTION

BOTH vertebrate and invertebrate animals are able to
manage their body with high precision, despite the

high under-actuation of neuro-muscle-skeletal system. On
the opposite, controllers of classic rigid robots often rely
on a fully actuated input space which is exploited to force
the whole dynamics to behave according to a prescribed
behavior. Soft robots gained considerable attention in the
last few years, thanks to their ability to solve in new and
more effective ways problems often unsolved by classic
rigid bodied robots [1], [2]. Nonetheless, while consider-
able efforts have been dedicated to building soft bodies,

Manuscript received: October, 15, 2018; Revised January 11, 2019;
Accepted March 8, 2019. This paper was recommended for publication by
Editor Kyu-Jin Cho upon evaluation of Reviewers’ comments. This work
was supported by the National Science Foundation (grant NSF 1830901
and NSF 1226883), and by the European Union’s Horizon 2020 research
and innovation programme under Grant Agreement 645599 (Soma). The
work was partially supported by the Italian Ministry of Education and
Research (MIUR) in the framework of the CrossLab project (Departments
of Excellence). We are grateful for this support.

C. Della Santina, L. Pallottino, and A. Bicchi are with Cen-
tro E. Piaggio, and the Dept. of Information Engineering, Uni-
versity of Pisa, Italy, cosimodellasantina@gmail.com,
lucia.pallottino@unipi.it

A. Bicchi is with “Soft Robotics for Human Cooperation and
Rehabilitation” Lab, Istituto Italiano di Tecnologia, Genoa, Italy,
antonio.bicchi@iit.it

D. Rus and C. Della Santina are with the Computer Science and Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar
St., Cambridge, MA 02139, USA, rus@csail.mit.edu

Digital Object Identifier (DOI): see top of this page.

relatively few works have dealt the problem of developing
effective brains, i.e. controllers [3]. A main reason behind
this shortage of results can be regarded as being the lack of
dynamic models, preventing the application of model-based
techniques. In recent years, this gap has been filled by the
introduction of several kinematic [4] and dynamic models
[5]–[8]. However, a main limitation in translating control
results from classic robotics to the soft world still persists;
standard control strategies typically assume a fully actuated
space [9], while continuum soft robots are inherently under-
actuated1. In [10] we faced this issue by proposing a model
approximation, based on the space discretization of the robot
in a set of constant curvature segments, in number equal
to the actuators. This effectively produces a fully actuated
model, that we used to design controllers with encouraging
experimental results. However, this approach has obvious
limitations in managing deformations with non constant
curvature, as the ones produced by external or inertial forces.
So finding a general way of dealing with under-actuation
in soft bodied robots can be regarded as one of the main
challenges in soft robot control.

Furthermore, under-actuation appears not only as an in-
evitable practical requirement, but also as a goal to be
actively pursued. In rigid robots, a fully actuated input space
is ideal since it can be exploited to wash out the physical
properties of the system, imposing a prescribed behavior. In
contrast, soft robots embody an high degree of intelligence
directly in their bodies [11], and over-constraining them
through control can bring to a removal of that intelligence
[12]. Likewise, in the animal kingdom under-actuation is as
pervasive as softness. The animal muscles are organized in
low dimensional patterns of activation, called muscle syner-
gies [13]. Plenty of examples exist of soft bodied animals
controlling their bodies by using reduced input spaces (e.g.
octopuses [14], elephants [15]).

This work faces the problem of designing controllers for
highly under actuated soft robots, in the case of serial or
tree shaped soft limbs (see e.g. Fig. 1). First, we show
that the minimum number of linear patterns of actuation,
needed to execute a generic nonlinear task, is equal to the
dimension of the task itself. For example, three actuation
sources acting along a soft limb can move the robot’s tip
in space, regardless the robot length and shape. Despite
the apparent simplicity of the result, this property is not at
all obvious for at least two reasons. First, the task to be
accomplished has in general a non-linear relationship with
the robot’s configuration, while actuators act here linearly on

1The virtually infinite number of degrees of freedom can not be matched
by a same number of actuators.
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Figure 1. Schematic representation of a planar serial soft arm, with main
quantities highlighted. The configuration is described by q ∈ Rn - with qi
as its i−th element - which here collects the local changes of orientation
w.r.t. the horizontal. A torque τ ∈ Rn is applied along the limb. For
the sake of clarity only the i−th element τi is reported in figure. In this
example, the task variables x ∈ R2 are the end effector position. The
theory proposed in this paper enables the design of controllers which can
implement a desired behavior in task space, even with an input space of
very reduced dimensionality - two in this example.

the system. Second, the behavior of the robot in task space
is strongly affected by couplings with the whole soft body.
Thus, the reduced input space has to manage effects which
are inherently high dimensional.

We then introduce the dynamically consistent projector in
synergistic space, which allows to convert a large class of
controllers designed for fully actuated system, to the reduced
dimensional input case. The new controller maintains all the
convergence characteristics in terms of task accomplishment
of the previous one. Finally, we propose an extension to the
soft-bodied case of the classic operational space controller
proposed in [16], and we use it to control the position of the
tip of a serial soft robot. We validate the proposed results in
simulation on a 2D arm placed on a planar surface, and on
a 3D soft limb moving in space.

To summarize, this paper contributes with
• A theoretical assessment of possibilities and limits

in nonlinear dynamic task accomplishment with soft
robots;

• A constructive way of translating existing dynamic
controllers to work in the soft robot case;

• The first model based dynamic controller for soft robots
tacking in account not constant deformations of the soft
body;

• Extensive simulations assessing the controller effective-
ness in nominal conditions.

II. DYNAMICS, TASK SPACE AND SYNERGIES

Soft robots have continuously deformable bodies, thus
their dynamics is naturally formulated as an infinite di-
mensional system [17]. However, in recent years several
works [5]–[8] have been proving that more standard ordinary
differential equations can be used to describe robot behavior
at any level of accuracy. Leveraging on these results, we
consider in this work a generic soft robot as described by
the following set of ordinary differential equations

B(q)q̈ + C(q, q̇)q̇ +G(q) +Kq +Dq̇ = τ , (1)

where q ∈ Rn is the configuration space, with its time
derivatives q̇, q̈ ∈ Rn. B(q) ∈ Rn×n is the inertia matrix,

C(q, q̇)q̇ ∈ Rn collects centrifugal and Coriolis effects, and
G(q) ∈ Rn takes into account the effect of gravity. The
impedance of the robot is consider for simplicity linear. How-
ever, most of the results proposed are easily generalizable to
the nonlinear case. K ∈ Rn×n is the robot’s stiffness, and
D ∈ Rn×n is the damping. Both matrices are symmetric
and positive defined. A set of torques τ ∈ Rn are applied to
the robot. A full and exact knowledge of the model will be
assumed in the following.

Note that no explicit constraints are imposed in (1).
Among the other things, this implies that we are taking in
consideration trunk-like soft manipulators (i.e. serial), or soft
systems with tree topology (e.g. a soft upper body with not
interacting limbs). Future work will be devoted to extending
our results to closed chains, and non holonomic soft robots.

A common way of describing a task to be accomplished
by the robot is by introducing the following output function

x = h(q) , h(·) : Rn → Rm

ẋ = J(q)q̇ , J(q) ,
∂h

∂q
.

(2)

We call x ∈ Rn configuration in task or operational space.
The prescribed behavior is defined through a desired (pos-
sibly time variant) task configuration xd. The goal of the
controller is to generate an actuation pattern τ , such that
x eventually converges to xd. A common choice for h(q)
is the direct kinematics of the robot’s tip [18], albeit its
applicability is much broader [19]. The only properties that
we ask h(q) to have are i) to be continuously differentiable
ii) to have a Jacobian J(q) with full rank almost everywhere.
We will refer to m = Rank{J(q)} as dimension of the task.
Given the discussed high dimensionality of the state space,
in the soft robot case

m << n . (3)

As an example, Fig. 1 shows a planar soft robot with main
quantities underlined.

In his seminal work [16], Khatib proposed to express the
dynamics of the task directly in terms of x. For a system
in the form of (1), the following operational space dynamics
results

Λx(q) ẍ+ η(q, q̇)

+ J+T
B (q) (G(q) +Kq +Dq̇) = J+T

B (q) τ .
(4)

Where J+
B ∈ Rn×m is the dynamically consistent pseudo-

inverse

J+
B (q) = B−1(q) JT(q)

(
J(q)B−1(q) JT(q)

)−1
, (5)

Λ(q) ∈ Rm×m is the inertia matrix of the task space, and
η(q, q̇) ∈ Rm collects the Coriolis and centrifugal terms. We
refer to [16] for the closed forms of these matrices in terms
of elements in (1).

Leveraging on (4), control strategies can be designed such
that x → xd. The development of such a controller is a
classic result in the rigid case, and articulated soft robot case
[20]. In all these previous works, a fully actuated model is
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considered, and the control action in torque space is produced
by taking

τ = JT(q) f , (6)

where f ∈ Rm is a generic wrench applied in task space (see
Fig. 1). Indeed, plugging (6) into (4) yields the following
fully actuated dynamics in task space

Λx(q) ẍ+ η(q, q̇) + J+T
B (q) (Kq +G(q) +Dq̇) = f , (7)

that can then be used to design control strategies directly in
task space.

In the general case, (6) spans all the input space Rn,
when varying f in Rm and q in Rn. However, while
mathematically feasible, requiring each torque to be exerted
independently is overly stringent, and not practically imple-
mentable, since it would require a too dense distribution of
actuators. So, as for synergies in animals, we consider

τ ∈ Span{S} , S ∈ Rn×k s.t. Rank{S} = k . (8)

In analogy to the natural example, we refer to Span{S} as
space of synergistic activations, of which the columns of
S are a base. As in natural synergies each column of S
describes a coordinate patter of activation in the soft robot’s
input space, i.e. a direction in which the actuation is exerted.
We will call S synergies matrix. The exact knowledge of
S is considered available in the rest of the paper. These
directions of actuations can be designed and implemented
through a variety of technologies, as electro-active polymers
[21], tendons [22], and soft fluid elastomer [23].

III. SYNERGISTIC CONTROL

The following theorem deals with the problem of under-
standing which is the minimum k, for which the synergy
matrix S ∈ Rn×k defines an input space sufficiently rich to
include all control actions needed to freely act on the task
space. The key idea of the theorem is accepting to produce a
residual torque τr, that can compensate for the components of
JT(q)f outside of Span{S}, while remaining dynamically
consistent with the task. The impossibility of fully decou-
pling nullspace from operational space when some degrees
of freedom are not actuated was first recognized in [24].

Theorem 1. Given an under-actuation pattern described by
the matrix S ∈ Rn×m, the control action

τ = JT(q)f + τr(q, f ;S) (9)

with

τr(q, f ;S) = (S(JB−1S)−1JB−1 − I)JTf (10)

is such that
τ ∈ Span{S} ∀q, f, S (11)

and it generates the fully actuated operational space dynam-
ics (7) if

Rank{JB−1S} = m . (12)

Proof. Condition (11) can be reformulated as

∃σ ∈ Rm s.t. Sσ = JT(q)f + τr(q, f ;S) . (13)

Having a fully actuated operational dynamics in the form of
(7) is instead equivalent to asking that (see (4))

f = J+T
B τ = J+T

B JT(q)f + J+T
B τr . (14)

Considering that J+T
B JT(q) = I , this can be reformulated

as
J+T
B τr = 0⇔ J(q)B−1(q)τr = 0 , (15)

which is implied by the invertibility of(
J(q)B−1(q) JT(q)

)−1
. Note that J(q)B−1(q)τr = 0

is the well known condition of dynamic consistency [20].
Eq.s (13) and (15) can be reformulated in matrix form as[

−I S
J(q)B−1(q) 0

] [
τr
σ

]
=

[
JT(q)f

0

]
. (16)

This is a linear problem, with n + m unkowns and n + m
equations. Furthermore, the block matrix in (16) is full rank
if JB−1S is full rank, which holds by hypothesis. Thus,
through block-inversion [25] we can conclude the proof by
evaluating τr(q, f ;S) and σ(q, f ;S){

τr(q, f ;S) = (S(JB−1S)−1JB−1 − I)JTf

σ(q, f ;S) = (JB−1S)−1JB−1JT f .
(17)

Remark 1. Note that

τ = JTf + τr(q, f ;S) = S(JB−1S)−1JB−1JT f . (18)

Thus the matrix

PS,B(q)
.
=
(
J(q)B−1(q)S(q)

)−1
J(q)B−1(q) (19)

assumes the role of a dynamically consistent projector into
the synergistic space Span{S}. Indeed, (9) can be equiva-
lently expressed as{

τ = Sσ

σ = PS,B(q)JT(q)f .
(20)

Here a force f ∈ Rm generated by a generic controller
designed in operational space (4) is first projected in the fully
actuated input space Rn by pre-multiplication for JT(q).
JT(q)f it is then transformed in a low dimensional input
σ ∈ Rm by PS,B(q). σ is then mapped to the torques
τ ∈ Span{S} ⊂ Rn, through the under-actuation model -
i.e. pre-multiplication for S. In this way controllers designed
for classic fully actuated robots (Fig. 2(a)) can be directly
adapted to the soft case (Fig. 2(b)). We will provide in
next section an example of application of this control design
technique.

Remark 2. The necessary and sufficient condition (12) is
equivalent to asking that any f produces at least some
acceleration in the direction of S. Indeed

Rank{JB−1S} = m

⇔Rank{STB−1JT} = m

⇔ST(B−1JTf) 6= 0 ∀f ∈ Rm \ {0}
(21)
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(a) Fully actuated (b) Under actuated

Figure 2. If the soft robot is imagined to be fully actuated (not feasible in practice) then a vast literature can be used to design controllers. Panel (a)
shows the block scheme in the case of a controller designed in operational space. The controller is made of two components; a main part producing the
control action in task space f - called Control in task space in figure - and a projection, mapping f into τ . However, in the practice soft robots are
highly under actuated. We model this by constraining τ to span a subspace of Rn, which can be as small as the task space. This is implemented by the
Muscle synergies block, in panel (b). The here proposed dynamically consistent projector in the synergies space PS,B extends controllers designed in the
previous case, to the more practically reasonable under actuated case. Trapezoids are used in the figure to visually represent the reduction or increment
of dimensionality.

where we exploited the symmetry of B−1. Note that B−1JTf
is the acceleration induced at the joint level by a force f
applied in the operational space.

Note that, while per se generically applicable, the result
presented in this section requires the robot to be able to ab-
sorb a torque τr without being destabilized. This is typically
not true for a rigid robot. Instead soft robots present a self
stabilizing property already recognized by previous works,
e.g. [10], [26], [27]. This is confirmed by the result that we
propose in the Appendix, showing that the physical feedback
Kq implemented by softness equips the soft robot with the
ability of supporting torques τr without losing stability.

IV. CONTROL OF A PLANAR SOFT ARM

In this section we consider the problem of controlling a
soft planar arm, as the one in Fig. 1. We consider it to be
1m long. Its 1Kg weight is homogeneously distributed along
the whole body. As discussed in Sec. II, its dynamics can
be accurately described by discretization. We consider for
simplicity the arm inextensible, and we approximate it as
a sequence of small links connected through revolute joints
[28]. 20 segments are taken into account here, with length
0.05m and weight 0.05Kg. The robot impedance is K =
0.05I N

rad , D = 0.005I N s
rad , where I ∈ R20×20 is the identity

matrix. Note that all the results presented here are provided
under the hypothesis of perfect knowledge of the system
model and state.

We consider as task the end effector positioning. Thus
x ∈ R2 is the end effector’s position expressed in Cartesian
coordinates (i.e. m = 2), and h(q) is the robot’s direct
kinematics. The rest configuration (i.e. q = 0) is such
that the robot is extended, with its end effector in position
x = [1, 0]Tm.

We propose to generate the control action in task space
through the following direct extension of Khatib’s Opera-
tional Space Controller [16]

f = Λx(q)(ẍd +Kd(ẋd − ẋ) +Kp(xd − x))

+ η(q, q̇) + J+T
B (q) (Kq +Dq̇)

(22)

where Kp and Kd are the proportional and derivative gains.
Remaining terms are defined as in (4).

Since m = 2, under hypothesis (21), only two synergies
are sufficient to fully control x. We examine three ways of
mapping the end effector force f ∈ R2 into joint space. The
first two implement the here proposed strategy (20) with two
different synergy matrices

τ = ST
lpσ , σ = PSlp,B(q)JT(q)f ∈ R2 (23)

τ = ST
hpσ , σ = PShp,B(q)JT(q)f ∈ R2 , (24)

where Slp ∈ R20×2 and Shp ∈ R20×2 are the two actuation
patterns, defined in Fig. 3. As third map we consider (6).
Once again, it is worth noticing that the dimensionality of
{τ s.t. τ = JT(q)f, ∀f ∈ R2, q ∈ Rn} is in general n,
i.e. the system is fully actuated (see Fig. 2(a)). Therefore this
map serves as benchmark, to compare the performance of
the two strongly under-actuated cases, with an upper bound
defined by the practically unfeasible fully actuated one.

Performing standard manipulations, and considering that

J+T
B (q)SPS,B(q)JT(q) =(
J B−1 JT

)−1
JB−1S

(
JB−1S

)−1
JB−1JT = I ,

(25)

yields a same closed loop dynamics in task space for all the
three projections

ë+Kdė+Kpe = 0 , (26)
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(a) Slp, 1st synergy (b) Slp, 2nd synergy (c) Shp, 1st synergy (d) Shp, 2nd synergy

Figure 3. Actuation patterns of a planar soft robot. The robot is 1m long. Each plot shows the amount of torque applied in each portion of the robot
when an unitary synergistic input is applied. Two choices of synergistic matrix are considered here. Panels (a-b) depicts Slp, wile panels (c-d) show Shp.
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(c) Fully actuated, S = I

Figure 4. Areas reachable by the end effector of a planar soft limb. The robot is 1m long, and in rest is placed with its base in x = (0, 0) and its tip in
x = (1, 0). The desired force at the end effector is specified by (22). The green circles are points that the robot is able to reach, while the black crosses
are points that the robot is not. We show with thin grey lines the trajectories of the end effector in case of success. The behavior is analogous for negative
values of x2, so only positive values are portrayed. Panel (a) shows the results when Slp is considered, and Panel (b) depicts the results when Shp is
implemented. In the latter case the reached portion of the operational space is comparable with the one obtained with a fully actuated system, as depicted
in Panel (c).

where e = xd−x is the tracking error. This linear dynamics
is globally asymptotically stable in zero for all Kd � 0, and
Kp � 0. This assures that the dynamic task is asymptotically
fulfilled. Different choices of Kd and Kp produce a different
transient behaviors. We implement here a decoupled over-
damped transient, by choosing Kd =

√
2I N s

m and Kp = I N
m ,

where I ∈ R2×2 is the identity matrix.
With the aim of extensively evaluating the performance

of the proposed strategy, we consider a set of targets to be
reached with the end effector, covering the whole workspace.
Resulting performance are reported in Fig. 4. We show here
only positive values of x2 since the behavior is symmetrical
for negative ones. Green circles indicate points that the robot
is able to reach, while black crosses mark points out of reach.
If a point has been reached, we report the full trajectory of
the end effector.

Fig. 4(a) shows results for the synergistic space defined
by Slp. The robot is able to operate locally, successfully
reaching close targets. Fig. 4(b) shows instead the closed
loop behavior when Shp is used. This choice of actuation
pattern produces improved performances, with a much larger
area of the operational space reached. This result is even
more encouraging if compared to the fully actuated case in
Fig. 4(c), which only slightly differs.

The proposed controller (22), together with (24), is also
tested in the more dynamic scenario of catching a target
moving according to the law

xd(t) =

[
0.75 + 0.25 sin(ωt)
0.2 + 0.2 cos(ωt)

]
m , (27)

with ω = 1
s . Fig. 5 shows some salient moments of the

resulting behavior. Colors encode the magnitude of the torque
τ applied along the robot, from dark blue encoding no
activation to red encoding maximum activation. The red cross
shows the current value of xd. The control in synergistic
space σ is depicted in Fig. 6(a), while the evolution in config-
uration space q is presented in Fig. 6(b). The corresponding
evolution in task space is reported in Fig. 6(c), confirming
that x ' xd after about 7s. The root mean square tracking
error in task space evaluated in a 60s time window is 0.068m.

V. CONTROL OF A SOFT ARM IN SPACE

To further test the effectiveness of proposed results we
consider a 3D soft arm, modeled as a sequence of 20
segments. We neglect extension and torsion deformations.
Thus each segment brings to the robot two degrees of
deformation [28], described by the Denavit-Hartenberg pa-
rameters 1) d = 0, a = 0, α = π

2 , θ = q2i−1, 2)
d = 0, a = 0, α = π

2 , θ = q2i−1. As in the previous
section, the soft limb is 1m long, and it weights 1Kg. The
weight is homogeneously distributed. The robot impedance
is K = 5I Nm

rad , D = 1I Nm s
rad , where I ∈ R3×3 is the identity

matrix. We consider as task space the three coordinates of
the end effector. The controller derives directly from (22) by
including gravity compensation G(q). The system is under
actuated as specified by the synergy matrix S = J(q̄), with
q̄ = [π/40, −π/360 . . . π/40, −π/360]

Trad. The control
action f ∈ R3 is converted to the high dimensional torques
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Figure 5. Sequence of a soft limb catching a moving target in space. The target follows a circular trajectory, and it is graphically represented by a red
cross. The robot is controlled through (22). The system is able to correctly perform the task with only two directions of actuation, defined by the synergies
Shp. The level of activation along the robot is encoded with colors. Red is the maximum torque, while blue is no torque.
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(c) Task variables

Figure 6. Resulting behavior of the soft limb tracking with its tip the trajectory (27). Controller (22) and dynamically consistent projector in synergistic
space PShp,B are used. Panel (a) shows the evolution of the two synergy weights σ commanded by the controller. They generate the evolution of
configuration in time presented in Panel (b), and the evolution in task space in Panel (c). The robot behavior (solid lines) converges to the desired one
(dotted lines) after about seven seconds.

through the dynamically consistent projector PJ(q̄),B . In
analogy with (22), we propose the controller

τ = S PS,B(q)[Λx(q)(ẍd +Kd(ẋd − ẋ) +Kp(xd − x))

+η(q, q̇) + J+T
B (q) (Kq +Dq̇ +G(q))] .

(28)

Arguments analogous to the ones reported in the previous
section yield a task space closed loop dynamics equivalent
to (26). Thus, the convergence condition is again that both
Kd and Kp are positive defined. We consider Kd = 10I N s

m
and Kp = I N

m , with I ∈ R3×3 being the identity matrix.

We present in Fig. 7 a sequence of the robot catching a
dynamically moving target with coordinates

xd(t) =

 0.7
0.3 cos(ωt)
0.3 sin(ωt)

 m , (29)

where ω = 1
s . The system acquires the target with its end

effector after about 7s and maintains it for the rest of the
execution. The root mean square tracking error in task space
evaluated in a 60s time window is 0.082m.
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(a) 0s (b) 1s (c) 2s (d) 3s

(e) 4s (f) 5s (g) 6s (h) 7s

(i) 8s (j) 9s (k) 10s (l) 11s

Figure 7. Sequence of a soft limb catching a moving target in space. The arm is free to move in 3D, and it is subject to a constant gravitational field.
The target is graphically represented by a red cross. The robot is controlled through (22). The system is able to correctly perform the task with only three
directions of actuation. The level of activation along the robot is encoded with colors. Red is the maximum torque, while blue is no torque.

VI. CONCLUSIONS AND FUTURE WORK

This paper deals with the problem of controlling soft
robots when only a reduced set of directions of actuation
is available. In soft robots is indeed intrinsically impossible
to work with a fully actuated input space without intro-
ducing strong approximations, while controllers developed
for classic rigid-bodied robots often assume this property.
We proved here that given a task of dimension m, a same
number of synergies are sufficient to accomplish it under
opportune hypotheses. We then introduced the Dynamically
Consistent Projector in Synergistic Space. It enables adapting
any controller designed into the task space, to generate
control actions in the under-actuated input space. Finally
we propose an extension of Khatib’s operational space
controller, using the proposed projector. The approach was
extensively tested in simulation on two planar soft arms, and
on a 3D soft arm experiencing gravity. Simulations show

very good performance. However, the quality of the results
changed substantially depending on the actuation pattern
considered. We will investigate this aspect in future work,
more specifically addressing the optimal design of S.

Given the nature of the present work, a perfect knowledge
of the model has been hypothesized for the sake of space
and readability. A formal evaluation of robustness is beyond
the scope of this paper, and we postpone it to future work,
together with the experimental validation of the algorithms.
Note indeed that, to fill the gap between model-based control
and experiments, also the problem dual to under-actuation
must be tackled. Indeed, as it is unreasonable to pack a
sufficient amount of actuators in a soft body to make it fully
actuated, it is also very challenging to introduce sufficient
sensors to make all the state directly measurable. This calls
for the design of state observers able to estimate the full soft
robot state from a reduced set of measurements.
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APPENDIX: A NOTE ON SELF STABILIZATION

Consider a set of constants MJ,i,Me,i,MG ∈ R+ such that∣∣∣∣∣∣∣∣dJidq

∣∣∣∣∣∣∣∣ < MJ,i ,

∣∣∣∣∣∣∣∣dJext,i

dq

∣∣∣∣∣∣∣∣ < Me,i ,

∣∣∣∣∣∣∣∣dGdq
∣∣∣∣∣∣∣∣ < MG ,

(30)
where Ji and Jext,i are Jacobians associated to i-th output
and contact point respectively, and G is the gravity field.
Then the following proposition holds

Proposition 1. The soft robot

B(q)q̈+C(q, q̇)q̇+G(q) +Kq+Dq̇ = JTf̄ + τ̄ + JT
extf̄ext

(31)
is stable for all choices of f̄ ∈ Rm, τ̄ ∈ Rn, and f̄ext ∈ Rk
such that

K � (
∑
i

MJ,if̄i +
∑
i

Me,if̄ext,i +MG)I (32)

Proof. Let’s call qeq ∈ Rn the equilibrium configuration,
such that

Kqeq +G(qeq) = JT(qeq)f̄ + τ̄ + JT
ext(qeq)f̄ext . (33)

Subtracting (33) from (31) yields

B(q)q̈ + C(q, q̇)q̇ + (G(q)−G(qeq)) +K(q − qeq) +Dq̇ =

(JT(q)− JT(qeq))f̄ + (JT
ext(q)− JT

ext(qeq))f̄ext .
(34)

We define

H(q) , G(q)− JT(q)f̄ − JT(q)f̄ext , (35)

obtaining the following dynamics

B(q)q̈ + C(q, q̇)q̇ +H(q) = K(qeq − q)−Dq̇ +H(qeq) .
(36)

This is equivalent to the dynamics of a rigid robot subject
to a gravity field H(q), and controlled through a PD plus
constant gravity compensation. Thus we can prove the thesis
from the same arguments of Th. 1 in [29]. Note indeed that
H(q) is limited by hypothesis, and that it admits the potential
function

U(q) = UG(q)− hT(q)f̄ − hT
ext(q)f̄ext , (37)

where UG : Rn → R is the gravity potential field, h(q) :
Rn → Rm and hext : Rn → Rk are the direct kinematics
of the operational space and of the points of application of
external forces respectively.
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