%0 Journal Article %J Int. J. Robotics Research %D 2015 %T Variable Stiffness Actuators: the user’s point of view %A G. Grioli %A S. Wolf %A M. Garabini %A M. G. Catalano %A E. Burdet %A D. G. Caldwell %A R. Carloni %A W. Friedl %A M. Grebenstein %A M. Laffranchi %A D. Lefeber %A S. Stramigioli %A N G Tsagarakis %A M. Van Damme %A B. Vanderborght %A A Albu-Schaeffer %A A. Bicchi %K Robotics %B Int. J. Robotics Research %V 34 %P 727-743 %8 05/2015 %G eng %U http://ijr.sagepub.com/cgi/reprint/0278364914566515v1.pdf?ijkey=anmgudvoLz7ZloP&keytype=finite %N 6 %R 10.1177/0278364914566515 %0 Conference Paper %B IEEE International Conference on Robotics and Automation (ICRA2013) %D 2013 %T Optimal Control for Maximizing Velocity of the CompActTM Compliant Actuator %A L. Chen %A M. Garabini %A M. Laffranchi %A N. Kashiri %A N G Tsagarakis %A A. Bicchi %A D. G. Caldwell %K Robotics %B IEEE International Conference on Robotics and Automation (ICRA2013) %P 516 - 522 %G eng %U 10.1109/ICRA.2013.6630623 %0 Journal Article %J Robotics and Autonomous Systems %D 2013 %T Variable Impedance Actuators: a Review %A B. Vanderborght %A A Albu-Schaeffer %A A. Bicchi %A E. Burdet %A D. G. Caldwell %A R. Carloni %A M. G. Catalano %A O. Eiberger %A W. Friedl %A G. Ganesh %A M. Garabini %A M. Grebenstein %A G. Grioli %A S. Haddadin %A H. Hoppner %A A. Jafari %A M. Laffranchi %A D. Lefeber %A F. Petit %A S. Stramigioli %A N G Tsagarakis %A M. Van Damme %A R. Van Ham %A L. C. Visser %A S. Wolf %K Robotics %K Soft robotics %K Variable Impedance Actuators %X

Variable Impedance Actuators (VIA) have received increasing attention in recent years as many novel applications involving interactions with an unknown and dynamic environment including humans require actuators with dynamics that are not well-achieved by classical stiff actuators. This paper presents an overview of the different VIAs developed and proposes a classification based on the principles through which the variable stiffness and damping are achieved. The main classes are active impedance by control, inherent compliance and damping actuators, inertial actuators, and combinations of them, which are then further divided into subclasses. This classification allows for designers of new devices to orientate and take inspiration and users of VIA’s to be guided in the design and implementation process for their targeted application.

%B Robotics and Autonomous Systems %V 61 %P 1601–1614 %8 12/2013 %G eng %U http://www.sciencedirect.com/science/article/pii/S0921889013001188 %N 12 %0 Audiovisual Material %D 2012 %T Variable Impedance Actuators: Moving the Robots of Tomorrow %A B. Vanderborght %A A Albu-Schaeffer %A A. Bicchi %A E. Burdet %A D. G. Caldwell %A R. Carloni %A M. G. Catalano %A G. Ganesh %A M. Garabini %A G. Grioli %A S. Haddadin %A A. Jafari %A M. Laffranchi %A D. Lefeber %A F. Petit %A S. Stramigioli %A N G Tsagarakis %A M. Van Damme %A R. Van Ham %A L. C. Visser %A S. Wolf %K Robotics %B International Conference of Intelligent Robots and Systems - IROS 2012- Best Jubilee Video Award %G eng